Potent and Orally Bioavailable 8-Bicyclo[2.2.2]octylxanthines as Adenosine \mathbf{A}_{1} Receptor Antagonists

William F. Kiesman, ${ }^{*, \dagger}$ Jin Zhao, ${ }^{\dagger}$ Patrick R. Conlon, ${ }^{\dagger}$ James E. Dowling, ${ }^{\dagger}$ Russell C. Petter, ${ }^{\dagger}$ Frank Lutterodt, ${ }^{\ddagger}$ Xiaowei Jin, ${ }^{\dagger}$ Glenn Smits, ${ }^{\ddagger}$ Mary Fure, ${ }^{\S}$ Andrew Jayaraj, ${ }^{\text {, }}$ John Kim, ${ }^{\|}$Gail Sullivan, ${ }^{\perp}$ and Joel Linden ${ }^{\perp}$
Departments of Chemistry, Pharmacology, Pharmaceutical Development, and Preclinical Development, Biogen Idec, Inc., 14 Cambridge Center, Cambridge, Massachusetts 02142, and Departments of Medicine (Cardiology) and Pharmacology, University of Virginia Medical Center, Charlottesville, Virginia 22901

Received May 9, 2006

In the search for a selective adenosine A_{1} receptor antagonist with greater aqueous solubility than the compounds currently in clinical trials as diuretics, a series of 1,4 -substituted 8 -cyclohexyl and 8 -bicyclo[2.2.2]octylxanthines were investigated. The binding affinities of a variety of cyclohexyl and bicyclo[2.2.2]octylxanthines for the rat and human adenosine $\mathrm{A}_{1}, \mathrm{~A}_{2 \mathrm{~A}}, \mathrm{~A}_{2 \mathrm{~B}}$, and A_{3} receptors are presented. Bicyclo[2.2.2]octylxanthine $\mathbf{1 6}$ exhibited good pharmaceutical properties and in vivo activity in a rat diuresis model $\left(\mathrm{ED}_{50}=0.3 \mathrm{mg} / \mathrm{kg} \mathrm{po}\right)$. Optimization of the bridgehead substituent led to propionic acid 29 (BG9928), which retained high potency $\left(\mathrm{hA}_{1}, K_{i}=7 \mathrm{nM}\right)$ and selectivity for the adenosine A_{1} receptor (915 -fold versus adenosine $\mathrm{A}_{2 \mathrm{~A}}$ receptor; 12-fold versus adenosine $\mathrm{A}_{2 \mathrm{~B}}$ receptor) with improved oral efficacy in the rat diuresis model $\left(\mathrm{ED}_{50}=0.01 \mathrm{mg} / \mathrm{kg}\right)$ as well as high oral bioavailability in rat, dog, and cynomolgus monkey.

Introduction

Adenosine, a metabolite of ATP with a variety of intra- and extracellular signaling functions, is released from cells under ischemic or hypoxic conditions. ${ }^{1}$ Although a transient signaling molecule with a plasma half-life under a few seconds, ${ }^{2}$ adenosine exerts a plethora of pharmacologic effects via four G-protein coupled adenosine receptors: $\mathrm{A}_{1}, \mathrm{~A}_{2 \mathrm{~A}}, \mathrm{~A}_{2 \mathrm{~B}}, \mathrm{~A}_{3}$. The adenosine receptor subtypes belong to a family of rhodopsin-like receptors that contain seven transmembrane helical domains linked by three intracellular and three extracellular loops. ${ }^{3}$ The alphahelices of the adenosine A_{1} receptor designated HI through HVII form a ligand binding pocket. ${ }^{4}$ Site-directed mutagenesis studies have postulated direct interaction of adenosine with transmembrane domains, while the third intracellular loop and the carboxyl terminus interact with G_{i} proteins. ${ }^{5}$ The adenosine A_{1} receptors in nervous tissues, heart, and kidney modulate neurotransmitter release, heart rate, and renal hemodynamics, respectively. ${ }^{6}$ Antagonists have been examined clinically as renal protective agents and also as possible treatments for congestive heart failure. ${ }^{7}$

There are many examples of potent adenosine A_{1} antagonists that contain bulky lipophilic substitution at the 8 -position of 1,3-dipropylxanthines (Figure 1). ${ }^{8,9}$ The highest affinity xan-thine-based molecules pictured in Figure 1 lack appreciably polar substituents. The utility of most of these compounds for intravenous administration in the treatment of acutely decompensated congestive heart failure patients in the clinic, however, may be limited because of their low water solubility. An exception to the general property of low solubility among potent A_{1} antagonists is the 8-aryl-substituted xanthine amine congener (XAC) first described by Jacobson et al. ${ }^{10 \mathrm{a}}$ XAC has long been

[^0]

KF 15372

KW3902 (NAX)

BG9719 ((S)-ENX)

MDL 102503

Figure 1. Adenosine A_{1} receptor antagonists containing bulky lipophilic substitution at the 8-position of 1,3-dipropylxanthine.

Figure 2. Xanthine amine congener (XAC), cyclohexylxanthine-, and bicyclo[2.2.2] octylxanthine targets with linear substitution patterns.
used in the elucidation of the pharmacologic actions of adenosine A_{1} receptors in living systems and possesses moderate aqueous solubility ($90 \mu \mathrm{M}$ in 0.1 M sodium phosphate at pH 7.2 ; Figure 2). Numerous reports describe a variety of XAC derivatives with linear substitution patterns (i.e., 1,4-disubstitution on the aryl ring attached to the 8 -position of the xanthine) and their effects on the binding affinities and selectivities. ${ }^{11}$ Olah et al. suggested
that amino acids in an 11-residue segment of the second extracellular loop of the adenosine A_{1} receptor may directly interact with antagonist ligands and lead to the high binding affinities. ${ }^{5 d}$ In addition, covalent attachment of XAC-related compounds to the receptor through reactive functional groups ${ }^{10 \mathrm{~d}, 12}$ and a number of modeling studies ${ }^{13}$ suggested that the xanthine portion of the antagonist binds deep within the receptor transmembrane binding cleft and that the 8-position on the xanthine ring system is oriented outward toward the membrane surface. This binding mode suggests that tethered polar substituents might be introduced without greatly affecting binding affinity. Despite this promising lead in the 8 -aryl series, relatively little work has been done to examine in a systematic way the effects of linear substitution on saturated carbocycles at the xanthine 8 -position. One notable exception is the examination of binding affinities and adenylate cyclase activity of a small group of cyclopentyl- and cyclohexyl-substituted xanthines by Wells and colleagues. ${ }^{14}$ We have expanded the examination of this class of ligands and herein describe the SAR of 8-cyclohexyl and 8-bicyclo[2.2.2]octylxanthines that contain linear substitution patterns (Figure 2). Also presented are data regarding in vivo efficacy and bioavailability of some of the most potent of these adenosine A_{1} receptor antagonists.

Chemistry

The targeted 8-cyclohexyl-substituted xanthines were prepared in the classical 2-step procedure outlined in Scheme 1. trans-Cyclohexane-1,4-dicarboxylic acid monomethyl ester (2) ${ }^{15}$ was coupled with 5,6-diamino-1,3-dipropyl-1 H -pyrimidine-2,4-dione $(1)^{16}$ via a HATU-mediated (O-(7-azabenzotriazol-1-yl)- $N, N, N, N^{\prime}, N^{\prime}$ tetramethyluronium hexafluorophosphate) amidation. Subsequent ring closure and dehydration to form xanthine $\mathbf{3}$ occurred in hot $1 \mathrm{~N} \mathrm{KOH} /$ isopropyl alcohol. Yields for the 1,3dipropylxanthines ranged from 40 to 95% overall for the twostep process. Acid $\mathbf{3}$ was subjected to a second coupling reaction to produce amides $\mathbf{6}-\mathbf{9}$. Reduction of $\mathbf{3}$ with $\mathrm{BH}_{3}-$ THF gave alcohol 4, which was then capped by reaction with benzyl bromide under basic conditions to give benzyl ether $\mathbf{5}$. A similar coupling-cyclization sequence with the protected cyclohexyl amino acid $\mathbf{1 0}$ and $\mathbf{1}$ was followed to produce compounds $\mathbf{1 1}$ and $\mathbf{1 2}$ as a mixture of cis and trans isomers. Hydrogenation of 11 with in situ trapping with acetic anhydride and chromatographic separation gave acetyl derivatives $\mathbf{1 3}$ and $\mathbf{1 4}$.

The analogous 8-bicyclo[2.2.2]octyl-substituted xanthine $\mathbf{1 6}$ was prepared in the same manner to the cyclohexyl acid 3 (Scheme 2.). Bicyclo[2.2.2]octane-1,4-dicarboxylic acid monomethyl ester (15) was obtained commercially and also synthesized by literature procedures. ${ }^{17}$ Again, a subsequent coupling reaction of $\mathbf{1 6}$ with a variety of amines gave amides $\mathbf{1 7 - 2 2}$. Coupling of $\mathbf{1}$ with the pentyl-substituted acid 23 and base-induced cyclization gave compound 24. Esterification of acid 16 with acidic MeOH gave ester 25, which underwent a clean LiBH_{4} reduction to alcohol 26 (Scheme 3). Treatment of 26 with DessMartin periodinane (DMPI) produced aldehyde 27, which served as a common starting material for a series of homologs of acid 16. Wittig-type olefinations with a series of phosphonates added one, two, or three carbon atoms between the bridgehead position and the carboxylic acid in compounds 28, 29, 31, and 33.

Results and Discussion

Our attention was initially drawn to the 8 -cyclohexyl derivatives by an article published by Wells and co-workers. ${ }^{14 \mathrm{~b}}$ His work described a series of 1,4-substituted cyclohexanes that showed some promise as moderately selective adenosine A_{1}

Scheme 1. Synthesis of 8-Cyclohexylxanthines ${ }^{a}$

${ }^{a}$ Reagents and conditions: (a) acid 2, NEt_{3}, HATU, $\mathrm{CH}_{3} \mathrm{CN}$; (b) 1 N $\mathrm{KOH}, i-\mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O}$ (1:1), reflux; (c) amine, $\mathrm{NEt}_{3}, \mathrm{HATU}, \mathrm{CH}_{3} \mathrm{CN}$; (d) 1.0 M BH 3 -THF, $40^{\circ} \mathrm{C}$, THF; (e) $1.0 \mathrm{M} t$-BuOK, THF, BnBr ; (f) acid $\mathbf{1 0}$, NEt_{3}, HATU, $\mathrm{CH}_{3} \mathrm{CN}$; (g) $1 \mathrm{~N} \mathrm{KOH}, i$ - $\mathrm{PrOH}: \mathrm{H}_{2} \mathrm{O}$ (1:1), reflux; (h) H_{2}, $5 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, \mathrm{Ac}_{2} \mathrm{O}$ (isomers separated by prep HPLC).
antagonists and employed binding affinity determinations with a mix of rat-derived A_{1} receptors and human platelet-derived $\mathrm{A}_{2 \mathrm{~A}}$ receptors, which were available at the time. We chose to examine the binding affinities of the target compounds with the four available cloned human adenosine receptors $\left(\mathrm{hA}_{1}, \mathrm{hA}_{2 \mathrm{~A}}\right.$, $\mathrm{hA}_{2 \mathrm{~B}}$, and hA_{3}). The biological activities of the antagonists were evaluated by the following procedures. The primary screen consisted of a single-point assay performed in duplicate on membranes derived from stably transfected $\operatorname{HEK}\left(\mathrm{hA}_{2 \mathrm{~A}}, \mathrm{hA}_{2 \mathrm{~B}}\right.$, and hA_{3}) or CHO-K1 (hA_{1} receptors) cells expressing one of the four human adenosine receptor subtypes $\left(\mathrm{hA}_{1}, \mathrm{hA}_{2 \mathrm{~A}}, \mathrm{hA}_{2 \mathrm{~B}}\right.$, and $\left.h A_{3}\right) .{ }^{18}$ Membranes were incubated at room temperature for 2 h with ${ }^{125}$ I-labeled radioligands, competing antagonists, and $1 \mathrm{U} / \mathrm{mL}$ adenosine deaminase, filtered over glass fiber filters, and retained radioactivity counted in a γ-counter. Nonspecific binding was measured in the presence of $50 \mu \mathrm{M} \mathrm{XAC}$ or 10 $\mu \mathrm{M} \mathrm{BW}-1433\left(\mathrm{hA}_{3}\right)$. Data are presented as percent (\%) of

Scheme 2. Synthesis of Bicyclo[2.2.2]octylxanthines ${ }^{a}$

16
17: $\mathrm{R}_{1}=\mathrm{H} ; \mathrm{R}_{2}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}(\mathrm{Me})_{2}$
18: $\mathrm{R}_{1}=\mathrm{H} ; \mathrm{R}_{2}=\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}$
19: $\mathrm{R}_{1}=\mathrm{H} ; \mathrm{R}_{2}=\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$
20: $\mathrm{R}_{1}=\mathrm{Me}$; $\mathrm{R}_{2}=\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}$
21: $\mathrm{R}_{1}=\mathrm{H} ; \mathrm{R}_{2}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}$
22: $\mathrm{R}_{1}, \mathrm{R}_{2}=$ piperidine-4-carboxylic acid

Note: bicyclo[2.2.2]octanes have been represented in the following manner throughout the text
24
${ }^{a}$ Reagents and conditions: (a) acid 15, $\mathrm{NEt}_{3}, \mathrm{HATU}, \mathrm{CH}_{3} \mathrm{CN}, 25^{\circ} \mathrm{C}$; (b) $1 \mathrm{~N} \mathrm{KOH}, i-\mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O}$ (1:1), reflux; (c) amine, $\mathrm{NEt} 3, \mathrm{HATU}^{2} \mathrm{CH}_{3} \mathrm{CN}, 25{ }^{\circ} \mathrm{C}$; (d) acid 23, $\mathrm{NEt}_{3}, \mathrm{HATU}, \mathrm{CH}_{3} \mathrm{CN}, 25^{\circ} \mathrm{C}$; (e) $1 \mathrm{~N} \mathrm{KOH}, i-\mathrm{PrOH} / \mathrm{H}_{2} \mathrm{O}$ (1:1), reflux.

Scheme 3. Synthesis of Higher Homologs of Carboxylic Acid 16 ${ }^{a}$

29
28
30
31

[^1]Table 1. Adenosine Receptor Binding Affinities for Cyclohexyl-Substituted Derivatives of 1,3-Dipropylxanthine

Compd	R	1,4stereochem	$K_{i}(\mathrm{nM})^{\mathrm{a}}$ or \% of specific radioligand binding ${ }^{\text {b }}$				$\mathrm{hA}_{2 \mathrm{~A}} / \mathrm{hA}_{1}$
			h ${ }_{1}$	$\mathrm{hA}_{2 \mathrm{~A}}$	$\mathrm{hA} \mathrm{A}_{\text {B }}$	hA_{3}	
3	$\mathrm{O}_{2}^{\mathrm{O}} \mathrm{OH}$	trans	(31\%)	(75\%)	(69\%)	(88\%)	--
4	$3{ }_{2}$	trans	41	313	(18\%)	(77\%)	8
5	,	trans	171	2720	(28\%)	(95\%)	16
6	O	trans	46	2260	(11\%)	(93\%)	49
7		trans	12	168	(16\%)	(91\%)	14
8		trans	(60\%)	(99\%)	(48\%)	(88\%)	--
9		trans	(46\%)	(70\%)	(39\%)	(100\%)	--
11		cis/trans	(23\%)	(69\%)	(30\%)	(100\%)	--
12		trans	109	2960	(24\%)	(86\%)	27
13	$\underset{\sim}{\mathrm{HN}-\mathbb{S}_{\mathrm{O}}}$	cis	(60\%)	(63\%)	(46\%)	(100\%)	--
14	$\mathrm{H}_{2}^{\mathrm{HN}-\mathbb{S}_{\mathrm{O}}^{2}}$	trans	(45\%)	(92\%)	(38\%)	(100\%)	--

${ }^{a}$ All K_{i} values were calculated from binding curves generated from the mean of four determinations per concentration (seven antagonist concentrations), with the variation in individual values of $<15 \%$. ${ }^{b}$ Data are presented as percent (\%) of radioligand bound in the presence of target compound relative to control.
$500 \mathrm{nM})$ relative to the result reported by Wells and co-workers $\left(\mathrm{rA}_{1}=59 \mathrm{nM}\right)$. This result was not surprising because it has been our experience that, in general, the same antagonist can have a 10 -fold higher affinity for the rA_{1} receptor versus the hA_{1} receptor. Jacobson et al., in examining a series of 8-arylxanthines, also observed a loss in hA_{1} activity with the introduction of a 4-carboxyl group. ${ }^{10 \mathrm{a}}$ Alcohol 4 had increased hA_{1} and $\mathrm{hA}_{2 \mathrm{~A}}$ affinity when compared to the acid (Table 1). Capping with a benzyl group decreased hA_{1} affinity by about 4 -fold but had a greater negative effect on $\mathrm{hA}_{2 \mathrm{~A}}$ affinity (8 -fold loss). This result suggested that the $h \mathrm{~A}_{2 \mathrm{~A}}$ receptor was less able to accommodate the nonpolar benzyl group in the outer region of the receptor (i.e., near the membrane surface). Examples of tertiary amides in the 4 -position, compounds $\mathbf{8}$ and $\mathbf{9}$, showed poor binding. The n-butyl amide 6, with an $\mathrm{N}-\mathrm{H}$ in the analogous position to the $\mathrm{O}-\mathrm{H}$ in 4 , had about the same affinity for the hA_{1} receptor as alcohol $\mathbf{4}$ but was more selective versus
$\mathrm{hA}_{2 \mathrm{~A}}\left(\mathrm{hA}_{2 \mathrm{~A}} / \mathrm{hA}_{1}\right.$ ratio $\left.=49 \mathrm{vs} 8\right)$. Substitution with the basic N, N-dimethylethylenediamine gave 7 , the most potent hA_{1} antagonist of this series, with a $\mathrm{hA}_{1} K_{i}=12 \mathrm{nM}$ and significant activity against the $\mathrm{hA}_{2 \mathrm{~A}}$ receptor ($K_{i}=168 \mathrm{nM}$). This observation mirrors Wells' results in the cyclohexyl series and indicated that amino substitution at the terminus was well received by both hA_{1} and $\mathrm{hA}_{2 \mathrm{~A}}$ receptors. Acylamino substitution on the cyclohexyl ring (with cis or trans stereochemistry) produced compounds with low affinities (13, 14). The trans benzylcarbamate $\mathbf{1 2}$ had modest hA_{1} activity (109 nM) and selectivity against all of the human receptors similar to that of benzyl ether 5 (see Table 1).

Addition of a two-carbon bridge linking the 1- and 4-positions across the cyclohexane ring gave bicyclo[2.2.2]octane derivatives with added steric bulk at the 8 -position and no stereochemical complexity (Figure 2). The first example, 16, despite bearing a bridgehead carboxylic acid, demonstrated surprisingly

Table 2. Adenosine Receptor Binding Affinities for Bicyclo[2.2.2]octyl-Substituted Derivatives of 1,3-Dipropylxanthine

Compd	R	$K_{i}(\mathrm{nM})^{\mathrm{a}}$ or \% of specific radioligand binding ${ }^{b}$				$\mathrm{hA}_{2 \mathrm{~A}} / \mathrm{hA}_{1}$	$\mathrm{hA}_{2 \mathrm{~B}} / \mathrm{hA}_{1}$
		$\mathrm{hA}{ }_{1}$	$\mathrm{hA}_{2 \mathrm{~A}}$	$\mathrm{hA}_{2 \mathrm{~B}}$	hA_{3}		
16	${ }^{\mathrm{O}}$	33	1070	(48\%)	(100\%)	32	--
17	$\underbrace{0}_{2,2} \overbrace{}^{\mathrm{NH}(\mathrm{Me})_{2}}$	6	132	(3\%)	(79\%)	22	--
18	${ }_{2, n}^{\mathrm{O}} \mathrm{NH}-\mathrm{CO}_{2} \mathrm{Me}$	8	681	207	6700	85	26
19	${ }_{3,2}^{\mathrm{O}}-\mathrm{NH}^{-\mathrm{CO}_{2} \mathrm{H}}$	49	7880	(53\%)	(70\%)	161	--
20		112	>10000	296	(88\%)	>89	3
21	$\underbrace{0}_{2} \mathrm{NH}^{\mathrm{CO}_{2} \mathrm{Me}}$	22	1400	505	>10000	63	23
22		96	7820	(41\%)	(100\%)	81	--
24	${ }_{2 / 2}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{Me}$	(25\%)	(79\%)	(100\%)	(100\%)	--	--
25	$\mathrm{O}_{2}^{\mathrm{o}} \mathrm{OMe}$	9	912	(19\%)	(44\%)	101	--
26	, ${ }^{-} \mathrm{OH}$	16	414	(27\%)	(73\%)	26	--
27	$y_{2}=0$	15	799	(14\%)	(76\%)	53	--

${ }^{a}$ All K_{i} values were calculated from binding curves generated from the mean of four determinations per concentration (seven antagonist concentrations), with the variation in individual values of $<15 \% .{ }^{b}$ Data are presented as percent $(\%)$ of radioligand bound in the presence of target compound relative to control.
good hA_{1} affinity (33 nM ; Table 2), a marked improvement over its cyclohexyl congener 3 (estimated $K_{i}>500 \mathrm{nM}$), and was in direct contrast to the negative effects of acid substitution noted with 8 -arylxanthines. ${ }^{10 \mathrm{a}}$ To probe the area beyond the bicycle for polar binding interactions that would differentiate between the hA_{1} and the $\mathrm{hA}_{2 \mathrm{~A}}$ receptors, a series of amides were prepared that tethered amines, acids, and esters with a variety of methylene spacers. The N, N-dimethylethylenediamine amide $\mathbf{1 7}$ had a hA_{1} binding affinity similar to the cyclohexyl variant 7 and also remarkably similar $\mathrm{hA}_{2 \mathrm{~A}}$ affinity (132 nM vs 168 nM). The terminal amine substitution offered no selectivity enhancement, so a series of carboxylic acids were then examined. The glycine methyl ester analog 18 maintained hA_{1} affinity $(8 \mathrm{nM})$ and had a $\mathrm{hA}_{2 \mathrm{~A}} / \mathrm{hA}_{1}$ selectivity ratio $=85$, similar to that of the bridgehead methyl ester 25; $\mathrm{hA}_{2 \mathrm{~A}} / \mathrm{hA}_{1}=$ 100. Methylation of the amide nitrogen (20) or installation of piperidine-4-carboxylate (22) led to >10-fold hA_{1} affinity losses. Insertion of a methylene spacer gave 21 and led to a 3 -fold loss in hA_{1} potency and had a smaller effect on $\mathrm{hA}_{2 \mathrm{~A}}$ binding affinity. The glycine-free-acid analog (19) on the other hand gave the most hA_{1}-selective example with the $\mathrm{hA}_{2 \mathrm{~A}} / \mathrm{hA}_{1}$ selectivity ratio of 160 . It appeared that proper placement of the carboxylate in 8-bicyclo[2.2.2]octyl xanthines markedly
decreased $\mathrm{hA}_{2 \mathrm{~A}}$ affinities and generally maintained the hA_{1} binding properties. Other less-polar examples, alcohol 26 and aldehyde 27, had better hA_{1} affinities, but had selectivity ratios similar to acid 16. Replacement of the carboxylic acid with a pentyl chain (24) dramatically diminished the hA_{1} binding affinity ($>500 \mathrm{nM}$). This result suggested that there were either polar pockets within the adenosine receptors in regions between the xanthine binding domain and the cell surface or that acid 16 had a significantly different binding mode.
Bicyclo[2.2.2]octyl structures (sans amide linkages) with carboxylic acids of various lengths attached to the bridgehead position were investigated (Table 3). The addition of a methylene spacer between the bridgehead position and the carboxylic acid in 16 led to a 3-fold loss in rA_{1} affinity (31). Insertion of a trans-double bond, compound 28 , increased A_{1} affinity to single-digit nanomolar and imparted a 10 -fold increase in hA_{1} selectivity over $\mathrm{hA}_{2 \mathrm{~A}}$: ratio $=333$. The saturated propionic acid analog 29 had similar hA_{1} affinity (7.4 nM) but extraordinary selectivity (915 -fold) over the $\mathrm{hA}_{2 \mathrm{~A}}$ receptor. Evidently, the $\mathrm{hA}_{2 \mathrm{~A}}$ receptor was unable to accommodate the modest increase in bulk of the alkyl linker. Further elongation of the chain with an additional methylene spacer gave butyrate $\mathbf{3 3}$ that had binding affinities and selectivities similar to acid 16. All of the acids

Table 3. Carboxylic Acid Substitution at the Bridgehead Position of Bicyclo[2.2.2]octylxanthines

Compd	R	$K_{i}(\mathrm{nM})^{\mathrm{a}}$ or \% of specific radioligand binding ${ }^{\text {b }}$				$\mathrm{hA}_{2 \mathrm{~A}} / \mathrm{hA}_{1}$	$\mathrm{hA}_{2 \mathrm{~B}} / \mathrm{hA}_{1}$
		$\mathrm{h} \mathrm{A}_{1}$	$\mathrm{hA}_{2 \mathrm{~A}}$	$\mathrm{hA}_{2 \mathrm{~B}}$	hA_{3}		
16	o_{2}	$\begin{gathered} 33 \\ (7.8) r a t^{c} \end{gathered}$	1070	(48\%)	(100\%)	32	--
28		9.6	3330	100	(100\%)	333	10
29		$\begin{gathered} 7.4 \\ (1.3) r a t^{c} \end{gathered}$	$\begin{gathered} 6410 \\ (2440) r a t^{c} \end{gathered}$	90	>10000	915	12
31		(22.5) rat ${ }^{\text {c }}$	(8960) rat ${ }^{\text {c }}$	--	--	--	--
33		$\begin{gathered} 29 \\ \text { (4.0) rat } \end{gathered}$	(50\%) rat ${ }^{\text {c }}$	127	(26\%)	--	4
(S)-ENX	--	$\begin{gathered} 12 \\ (0.7) r a t^{d} \end{gathered}$	$\begin{gathered} 1660 \\ \text { (1250) rat } \end{gathered}$	611	4810	138	51
NAX	--	8.0	673	296	4390	84	37

[^2] 3-noradamantyl-1,3-dipropylxanthine.

Figure 3. Rat oral efficacy screen: measurement of UNaV in $\mu \mathrm{Eq} / \mathrm{h}$ (mean \pm SEM), in a 4-hour period, of a $0.3 \mathrm{mg} / \mathrm{kg}$ oral dose of antagonist in a 0.5% CMC suspension.
exhibited virtually no adenosine hA_{3} receptor binding at concentrations up to $1 \mu \mathrm{M}$. The most potent hA_{1} antagonists, $\mathbf{2 8}, \mathbf{2 9}$, and 33, all had some cross activity ($\sim 100 \mathrm{nM}$) against the $\mathrm{hA}_{2 \mathrm{~B}}$ receptor. Antagonism of this ubiquitously expressed low-affinity adenosine receptor is thought to play a beneficial role in ischemic preconditioning of the heart under hypoxic conditions and modulation of mast cell degranulation in asthmatics. ${ }^{20}$ Propionic acid 29 had similar hA_{1} affinity when compared to previous clinical compounds, (S)-ENX and NAX, but better $\mathrm{hA}_{2 \mathrm{~A}}$ selectivity (>7-fold higher).

Biological evaluations of the most potent hA_{1} antagonists in both the cyclohexyl and bicyclo[2.2.2]octyl series were performed. Oral activity was assessed in a rat diuresis model at a fixed dose of $0.3 \mathrm{mg} / \mathrm{kg}$. The test article was delivered by gavage as a 0.5% carboxymethylcellulose (CMC) suspension to rats housed in metabolic cages. Over a 4-hour period, urine was collected and Na and K excretions (determined as microequivalents) were measured by FIS. The results for selected compounds appear in Figure 3. Despite a 10 -fold difference in rA_{1} binding

Figure 4. Reversal effect (inhibition) of increasing concentrations of compound 29 on CPA (130 nM) suppression of the isoproterenolstimulated (30 nM) heart rate in beating, isolated rat atria. (5 atria/ dose group).

Table 4. Pharmacokinetic Parameters Following a Single Oral Dose of Selected Adenosine A_{1} Receptor Antagonists ${ }^{a}$

compd	species	F $(\%)$	$t_{1 / 2}$ $(\mathrm{~h})$	CL $(\mathrm{mL} / \mathrm{min} / \mathrm{kg})$	V_{ds} $(\mathrm{L} / \mathrm{kg})$
$\mathbf{1 6}$	rat $(2 \mathrm{mg}$ dose $)$	97	2.14 ± 0.87	2.26 ± 0.41	0.57 ± 0.03
$\mathbf{2 9}$	rat $(1 \mathrm{mg} / \mathrm{kg})$	99	3.14 ± 0.14	1.56 ± 0.26	0.32 ± 0.02
	dog $(1 \mathrm{mg} / \mathrm{kg})$	78	6.40 ± 4.0	11.8 ± 0.6	2.64 ± 1.29
	cyno $(1 \mathrm{mg} / \mathrm{kg})$	94	11.1 ± 4.2	5.82 ± 0.45	4.25 ± 0.70
$\mathbf{3 3}$	rat $(1 \mathrm{mg} / \mathrm{kg})$	48	2.04 ± 0.65	7.10 ± 2.58	1.16 ± 0.20

${ }^{a} n=3$ male rats, 4 male dogs, and 4 male cynomolgus monkeys.
affinity between the bridgehead carboxylate 16 and the (S) ENX, the rat urinary sodium excretion (UNaV) values were similar. The N, N-dimethylethylenediamine amide $\mathbf{1 7}$ also showed good in vivo activity, in contrast to the amides that possessed a terminal carboxylic acid or ester $(\mathbf{1 8}, \mathbf{2 0})$. It is noteworthy that the bridgehead carboxylate 16, some 5 -fold less-active in vitro than amine 17, exhibited better in vivo efficacy. Propi-

Figure 5. Blockade by $0.3,3.0$, or 30.0 nM compound 29 or vehicle control (DMSO) of the inhibitory effect of increasing concentrations of CPA on isoproterenol-stimulated rat atria in vitro (5-6 atria/group). In Schild analysis: slope $=-0.865$; intercept $=8.49 ;$ and $\mathrm{pA}_{2}=9.8$. See Supporting Information for plot.

Figure 6. Dose response for urine volume in mL (mean \pm SEM) over 4 h , following single oral doses of vehicle $(n=3)$ or compound 29 ranging from 0.001 to $3 \mathrm{mg} / \mathrm{kg}$ in rats $(0.001 \mathrm{mg} / \mathrm{kg}, 0.003 \mathrm{mg} / \mathrm{kg}$, $0.01 \mathrm{mg} / \mathrm{kg}$, each $n=4 ; 0.03 \mathrm{mg} / \mathrm{kg}, 0.1 \mathrm{mg} / \mathrm{kg}, 0.3 \mathrm{mg} / \mathrm{kg}$, each $n=$ $5 ; 1.0 \mathrm{mg} / \mathrm{kg}, 3.0 \mathrm{mg} / \mathrm{kg}$, each $n=3$).

Figure 7. Dose response for UNaV in $\mu \mathrm{Eq} / \mathrm{h}$ (mean $\pm \mathrm{SEM}$) over 4 h , following single oral doses of vehicle $(n=3)$ or compound 29, ranging from 0.001 to $3 \mathrm{mg} / \mathrm{kg}$ in rats $(0.001 \mathrm{mg} / \mathrm{kg}, 0.003 \mathrm{mg} / \mathrm{kg}$, $0.01 \mathrm{mg} / \mathrm{kg}$, each $n=4 ; 0.03 \mathrm{mg} / \mathrm{kg}, 0.1 \mathrm{mg} / \mathrm{kg}, 0.3 \mathrm{mg} / \mathrm{kg}$, each $n=$ $5 ; 1.0 \mathrm{mg} / \mathrm{kg}, 3.0 \mathrm{mg} / \mathrm{kg}$, each $n=3$).
onates 28 and 29 demonstrated superiority over the other compounds, with sodium output almost twice that of any of the other compounds tested.

The pharmacokinetic parameters of $\mathbf{1 6}, \mathbf{2 9}$, and $\mathbf{3 3}$, administered as a single oral dose to male Sprague-Dawley rats, beagle dogs, and cynomolgus monkeys, are presented in Table 4. In the rat, $\mathbf{1 6}$ and $\mathbf{2 9}$ had excellent bioavailability, 97 and 99%, respectively, and exhibited relatively low clearance and volume of distribution. The half-life of $\mathbf{2 9}$ was also quite good in the rat ($>3 \mathrm{~h}$). In contrast, the higher homolog 33 had about half the bioavailability of the other acids, higher clearance, and

Figure 8. Dose response for UKV in $\mu \mathrm{Eq} / \mathrm{h}$ (mean $\pm \mathrm{SEM}$) over 4 h , following single oral doses of vehicle $(n=3)$ or compound 29, ranging from 0.001 to $3 \mathrm{mg} / \mathrm{kg}$ in rats $(0.001 \mathrm{mg} / \mathrm{kg}, 0.003 \mathrm{mg} / \mathrm{kg}, 0.01 \mathrm{mg} /$ kg , each $n=4 ; 0.03 \mathrm{mg} / \mathrm{kg}, 0.1 \mathrm{mg} / \mathrm{kg}, 0.3 \mathrm{mg} / \mathrm{kg}$, each $n=5 ; 1.0$ $\mathrm{mg} / \mathrm{kg}, 3.0 \mathrm{mg} / \mathrm{kg}$, each $n=3$).

Table 5. Solubility Profiles of Adenosine A_{1} Antagonists in Various Solvent Systems ${ }^{a}$

compd	WFI^{b}	0.9% saline	$\mathrm{D} 5 \mathrm{~W}^{c}$	EtOH	octanol
$\mathbf{1 6}$	18.1	29.8	63.0	51.0	60.0
$\mathbf{2 9}$	24.4	25.4	12.4		
$\mathbf{3 3}$	0.5				
(S)-ENX d	0.46	0.43	0.25	85.3	4.6
NAX e	<0.01			24.0	82.3

${ }^{a}$ All solubility values were measured in units of $\mathrm{mg} / \mathrm{mL}$ and calculated from duplicate determinations in each solvent, with the variation in individual values of $<5 \%$. ${ }^{b}$ Sterile water for injection. ${ }^{c}$ Dextrose 5% in water. ${ }^{d}$ 1,3-Dipropyl-8-[2-(5,6-exo-epoxy-($1 S, 2 S$)-norborn-2-yl)]-xanthine. ${ }^{e} 3$-Noradamantyl-1,3-dipropylxanthine.
a larger volume of distribution. The pharmacokinetics of $\mathbf{2 9}$ was further evaluated in the dog and cynomolgus monkey and demonstrated rapid absorption and widespread distribution, followed by bi-phasic disposition. Bioavailability was nearly complete in the cynomolgus monkey and slightly lower in the dog. Exposure was highest in the rat, followed by the monkey and dog, with correspondingly increased clearance with increasing body weight. Elimination half-lives following a $1 \mathrm{mg} / \mathrm{kg}$ dose are relatively similar in the rat and dog at 3 and 6 h , respectively, and longer in the monkey at approximately 11 h .

Further work explored the functional activity of compound 29. The sinoatrial (S-A) node is a small crescent strip of specialized muscle located in the posterior wall of the right atrium immediately beneath and medial to the opening of the superior vena cava. Any action potential that begins in the S-A node spreads immediately to the atrium, providing the atrium with automatic rhythmicity that allows it to beat independently when isolated from the heart. Decreases or increases in heart rate, as assessed in rat atria, have been used to quantify responses mediated by the adenosine A_{1} receptor. Pharmacological potency of a series of reference adenosine analogues possessing selectivity for the adenosine A_{1} receptor has been used to define the profile for A_{1} adenosine receptor antagonists. ${ }^{21}$ The following study was designed to evaluate the ability of 29 to block the negative chronotropic effects of activation of A_{1} receptors by N^{6}-cyclopentyl adenosine (CPA) in the isolated rat atrium and, thus, to assess its potency as an adenosine A_{1} receptor antagonist. After atrial beat rate stabilization, 130 nM CPA was added to baths to cause a 75% reduction in atrial beating rate (zero point). Increasing concentrations of $\mathbf{2 9}$ were then added until the rate was restored to maximum (Figure 4). The mean EC_{50} of 29 in the CPA dose reversal experiment was $16.1 \pm$ 7.7 nM . The next set of experiments was used to determine the affinity of $\mathbf{2 9}$ for its receptor. Atrial rate was recorded in the
presence of 30 nM isoproterenol and compound $29(0,0.3,3.0$, and 30 nM). In the continued presence of isoproterenol and $\mathbf{2 9}$, increasing concentrations of CPA from 1 nM to $30 \mu \mathrm{M}$ were added cumulatively until the atrial rate was lowered to zero. The EC_{50} was determined for the vehicle control and each of the antagonist concentrations. Schild analysis was used to calculate the affinity of $\mathbf{2 9}$, the competitive antagonist, for its receptor $\left(\mathrm{pA}_{2}\right)$. Parallel rightward shifts in CPA inhibition curves were seen with increasing concentrations of compound 29, indicative of competitive antagonism (Figure 5). The pA_{2} for compound 29 was calculated to be 9.8 .

The oral activity of 29 was investigated in a series of experiments that examined, in a dose-related fashion, diuresis (Figure 6), natriuresis (Figure 7), and kaliuresis (Figure 8). Compound 29 caused a dose-related diuretic and natriuretic effect, which reached a maximum for both with a dose between 0.3 and $1 \mathrm{mg} / \mathrm{kg}$. The half-maximal effect $\left(\mathrm{ED}_{50}\right)$ was approximately $15 \mu \mathrm{~g} / \mathrm{kg}$. The diuretic and natriuretic effects were associated with a neutral effect on potassium excretion (UKV), that is, UKV increased in proportion to volume. Potassium concentration in urine remained constant or slightly decreased across the dose ranges (Figure 8).

As the product was targeted for delivery to acutely decompensated congestive heart failure patients in the hospital setting, the solubilities of 16, 29, and $\mathbf{3 3}$ were evaluated in comparison to the earlier clinical candidate, (S)-ENX, and another adenosine A_{1} antagonist, NAX, in prototype solutions suitable for intravenous administration. These results are shown in Table 5. Acids 16 and 29 had acceptable solubilities in most of the preformulation solutions tested and were significantly better than the other clinical candidates.

Compound 29 was designated a clinical development candidate, given the product code BG9928, and put into a series of preclinical toxicity studies where it was well tolerated when administered intravenously or orally to rats and cynomolgus monkeys for periods up to 3 months. The clinical candidate has been examined in IV and oral studies in healthy volunteers and stable congestive heart failure patients and is the subject of ongoing longer term human clinical trials. ${ }^{22}$

Conclusion

In summary, we have prepared a novel series of xanthinebased adenosine A_{1} receptor antagonists. Bicyclo[2.2.2]octyl substitution at the 8 -position produced antagonists with high potencies toward the adenosine A_{1} receptor. Optimization of the lead molecule, 16, by the linear extension of an acidic bridgehead side chain gave 29, which possessed remarkable $\mathrm{hA}_{1} /$ $\mathrm{hA}_{2 \mathrm{~A}}$ selectivity, 915 -fold, and moderate selectivity over the $\mathrm{hA}_{2 \mathrm{~B}}$ receptor ($K_{i}=90 \mathrm{nM}, 12$-fold versus hA_{1}). The in vivo activity $\left(\mathrm{ED}_{50}=0.01 \mathrm{mg} / \mathrm{kg}\right.$-rat $)$ and pharmacokinetics of 29 in animal studies support its use either as a potential once-daily oral therapy or in an IV formulation for acute use. Single-dose and multiple-dose studies in healthy volunteers and congestive heart failure patients are ongoing and will be reported in due time.

Experimental Section

Unless otherwise stated, reactions were carried out under nitrogen in oven-dried glassware. The HPLC method used to determine purity was performed on an HP1100 system, YMC-ODS-AM C18 reversed-phase column ($4.6 \times 100 \mathrm{~mm}$), guard column YMC-ODSAM S-5 120A (direct connect); $20-100 \% \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ gradient over 8 min , buffered with $0.1 \% \mathrm{TFA}$ at $1.5 \mathrm{~mL} / \mathrm{min}$ flow rate, detector set at dual wavelength 214 and 254 nm . The purity of all compounds listed were $>95 \mathrm{~A} \%$ at 254 nm . Reversed-phase HPLC
was also used for preparative purposes (LiChroprep C-18, $310 \times$ $25 \mathrm{~mm}) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained using Bruker 300, 400 , and 500 MHz NMR spectrometers. High-resolution mass spectroscopic data were obtained on a Thermo Electron LTQ FTMS. The data were acquired at the positive, full scan, and SIM scan FT MS mode, protonated molecular ion designated as MH^{+}. All chemicals and reagents were supplied by Aldrich Chemical Co., Inc, Milwaukee, WI, unless otherwise indicated.

4-(2,6-Dioxo-1,3-dipropyl-2,3,6,7-tetrahydro-1H-purin-8-yl)cyclohexanecarboxylic acid, 3. To a stirred mixture of 2.00 g (10.7 mmol) of trans-cyclohexane-1,4-dicarboxylic acid monomethyl ester (2), ${ }^{15} 2.82 \mathrm{~g}(10.7 \mathrm{mmol})$ of 5,6 -diamino-1,3-dipropyl-1 H -pyrimi-dine-2,4-dione hydrochloride (1), ${ }^{16} 4.52 \mathrm{~mL}(32.2 \mathrm{mmol})$ of NEt_{3}, and 50 mL anhydrous acetonitrile were added $4.25 \mathrm{~g}(11.2 \mathrm{mmol})$ of HATU. The reaction solution was stirred at rt for 30 min . The reaction mixture was concentrated in vacuo and combined with 40 mL of EtOAc and 40 mL of 10% citric acid. The aqueous layer was separated and washed twice with $40-\mathrm{mL}$ portions of EtOAc. The combined organic fractions were washed with $20-\mathrm{mL}$ portions of satd NaHCO_{3} and brine and concentrated in vacuo. The resultant oil was combined, in a $200-\mathrm{mL}$ round-bottom flask equipped with a condenser, with a mixture of 30 mL of $i-\mathrm{PrOH}$ and 32.2 mL of $1 \mathrm{~N} \mathrm{KOH}(32.2 \mathrm{mmol})$ and heated to reflux. After heating for 1 h , the reaction solution was concentrated in vacuo, taken up in 40 mL of water, chilled in an ice bath, and acidified with concentrated HCl . The resultant precipitate was collected by suction filtration, washed with water, and dried to give 2.44 g (63% yield) of an off-white solid. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 0.85(\mathrm{~m}, 6 \mathrm{H})$, $1.64(\mathrm{~m}, 8 \mathrm{H}), 1.96(\mathrm{~m}, 4 \mathrm{H}), 2.29(\mathrm{dt}, 1 \mathrm{H}), 2.71(\mathrm{dt}, 1 \mathrm{H}), 3.81(\mathrm{dd}$, 2H), 3.91 (dd, 2H), $8.98(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) $\delta 11.0,11.1,20.8,28.1,30.0,37.0,41.6,41.9,44.2,106.0,147.5$, 150.6, 153.9, 157.7, 176.5; HRMS $m / z=363.20279\left(\mathrm{MH}^{+}\right)$, calcd $=363.20268 ; t_{\mathrm{R}}=3.97 \mathrm{~min}$.

8-(4-Hydroxymethyl-cyclohexyl)-1,3-dipropyl-3,7-dihydro-pu-rine-2,6-dione, 4. To a stirred suspension of $3(0.200 \mathrm{~g}, 0.55 \mathrm{mmol})$ in 10 mL THF at $40^{\circ} \mathrm{C}$ was added 1.50 mL of $1.0 \mathrm{M} \mathrm{BH}_{3}-\mathrm{THF}$. The mixture resolved into a clear solution over 1 h , which was then treated with 2.00 mL of 50% glacial acetic acid and stirred for an additional 3 h . The solution was concentrated in vacuo, and the residue was washed with water and dried to give 0.160 g of a white solid (83% yield). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.90$ (m, $6 \mathrm{H}), 1.11(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~m}, 8 \mathrm{H}), 1.98(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{~m}, 2 \mathrm{H}), 2.80$ $(\mathrm{dt}, 1 \mathrm{H}), 3.47(\mathrm{~d}, 2 \mathrm{H}), 4.03(\mathrm{~m}, 4 \mathrm{H})$; MS $\left(\mathrm{MH}^{+}\right)=349.25 ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.2,11.2,11.5,21.4,21.4,28.7,29.0$, 30.9, 38.7, 40.0, 43.3, 45.4, 68.1, 106.6, 148.6, 151.0, 155.6, 158.9; HRMS m/z=349.22357 $\left(\mathrm{MH}^{+}\right)$, calcd $=349.22342 ; t_{\mathrm{R}}=3.90$ min.

8-(4-Benzyloxymethyl-cyclohexyl)-1,3-dipropyl-3,7-dihydro-purine-2,6-dione, 5 . To a stirred solution of $4(0.040 \mathrm{~g}, 0.11 \mathrm{mmol})$ in 6 mL of THF was added 0.13 mL of $1.0 \mathrm{M} t$-BuOK in THF. After $30 \mathrm{~min}, 0.014 \mathrm{~mL}(0.12 \mathrm{mmol})$ of benzyl bromide was added. The solution was kept under reflux for another 3 h and then concentrated in vacuo. The residue was purified by flash chromatography (ethyl acetate/hexane, 4:1) to give $0.044 \mathrm{~g}(87 \%)$ of a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.90(\mathrm{~m}, 6 \mathrm{H}), 1.10(\mathrm{~m}$, $2 \mathrm{H}), 1.70(\mathrm{~m}, 8 \mathrm{H}), 1.95(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{~m}, 2 \mathrm{H}), 2.80(\mathrm{dt}, 1 \mathrm{H}), 3.35$ $(\mathrm{d}, 2 \mathrm{H}), 4.00(\mathrm{~m}, 4 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H}), 7.33(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(125$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.3,11.4,21.4,28.4,30.0,30.8,31.3,35.8,37.3$, 42.7, 44.7, 73.0, 75.7, 107.1, 127.6, 127.8, 138.6, 148.0, 151.2, 155.5, 157.6; HRMS $m / z=439.2706\left(\mathrm{MH}^{+}\right)$, calcd $=439.27037$; $t_{\mathrm{R}}=6.94 \mathrm{~min}$.

8-[4-(Morpholine-4-carbonyl)-cyclohexyl]-1,3-dipropyl-3,7-di-hydro-purine-2,6-dione, 8. To a stirred solution of $0.050 \mathrm{~g}(0.138$ mmol) of $\mathbf{3}$ in 1 mL of acetonitrile and $58 \mu \mathrm{~L}(0.414 \mathrm{mmol})$ of NEt_{3} and morpholine ($12 \mu \mathrm{~L} ; 0.138 \mathrm{mmol}$) was added 0.055 g $(0.144 \mathrm{mmol})$ of HATU. The reaction solution was stirred at rt for 30 min . The reaction mixture was concentrated in vacuo and purified by preparative HPLC (acetonitrile/water gradient 10-90\%; C18 stationary phase, over 30 min) to give a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.00(\mathrm{~m}, 6 \mathrm{H}), 1.80(\mathrm{~m}, 8 \mathrm{H}), 2.00(\mathrm{~m}, 2 \mathrm{H})$,
$2.10(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~m}, 2 \mathrm{H}), 2.65(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~s}$, $2 \mathrm{H}), 3.80(\mathrm{~m}, 4 \mathrm{H}), 4.10(\mathrm{~m}, 4 \mathrm{H}) ; \mathrm{MS} \mathrm{m} / \mathrm{z}=432.25\left(\mathrm{MH}^{+}\right) ; t_{\mathrm{R}}=$ 3.99 min .

The following compounds were made in an analogous manner.
4-(2,6-Dioxo-1,3-dipropyl-2,3,6,7-tetrahydro-1H-purin-8-yl)cyclohexanecarboxylic Acid Butylamide, 6. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.90(\mathrm{~m}, 9 \mathrm{H}), 1.30(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{~m}, 8 \mathrm{H})$, $2.09(\mathrm{~m}, 4 \mathrm{H}), 2.74(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{~s}, 1 \mathrm{H}), 3.19(\mathrm{dt}, 2 \mathrm{H}), 4.00(\mathrm{~m}$, $4 \mathrm{H}), 5.37(\mathrm{t}, 1 \mathrm{H}) ; \mathrm{MS}\left(\mathrm{MH}^{+}=418.31\right) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) $\delta 11.1,11.2,13.7,19.5,20.9,21.0,28.9,30.7,31.3$, $37.9,42.0,43.4,44.2,148.2,150.8,154.9,159.2,163.3,165.3$, 174.8; $\mathrm{HRMS} m / z=418.28143\left(\mathrm{MH}^{+}\right)$, calcd $=418.28127 ; t_{\mathrm{R}}=$ 4.78 min.

4-(2,6-Dioxo-1,3-dipropyl-2,3,6,7-tetrahydro-1H-purin-8-yl)cyclohexanecarboxylic Acid (2-Dimethylamino-ethyl)-amide, 7. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 0.85(\mathrm{~m}, 6 \mathrm{H}), 1.53(\mathrm{~m}, 6 \mathrm{H})$, $1.67(\mathrm{dt}, 2 \mathrm{H}), 1.81(\mathrm{~m}, 2 \mathrm{H}), 1.94(\mathrm{~m}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 6 \mathrm{H}), 2.26(\mathrm{t}$, $2 \mathrm{H}), 2.70(\mathrm{~m}, 1 \mathrm{H}), 3.13(\mathrm{q}, 2 \mathrm{H}), 3.82(\mathrm{dd}, 2 \mathrm{H}), 3.92(\mathrm{dd}, 2 \mathrm{H}), 7.70$ $(\mathrm{t}, 1 \mathrm{H}) ; \mathrm{MS}\left(\mathrm{MH}^{+}=433.25\right) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.2$, $11.5,21.4,21.4,29.1,30.5,36.5,37.9,43.3,44.6,45.1,45.3,57.7$, 106.6, 149.1, 151.0, 155.7, 158.9, 175.4; HRMS $m / z=433.29218$ $\left(\mathrm{MH}^{+}\right)$, calcd $=433.29217 ; t_{\mathrm{R}}=3.04 \mathrm{~min}$.

4-(2,6-Dioxo-1,3-dipropyl-2,3,6,7-tetrahydro-1H-purin-8-yl)cyclohexanecarboxylic Acid Diethylamide, 9. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.90(\mathrm{t}, 6 \mathrm{H}), 1.05(\mathrm{t}, 3 \mathrm{H}), 1.15(\mathrm{t}, 3 \mathrm{H}), 1.75(\mathrm{~m}$, $10 \mathrm{H}), 2.15(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{dd}, 2 \mathrm{H})$, 3.35 (dd, 2H), 3.90 (dd, 2H), 4.05 (dd, 2H); ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 11.2,11.5,13.2,15.1,21.4,29.2,30.5,37.8,39.7,40.5$, $41.9,43.2,45.4,106.5,151.1,155.4,158.5,174.8 ; \mathrm{MS} \mathrm{m} / \mathrm{z}=$ $418.90\left(\mathrm{MH}^{+}\right) ; t_{\mathrm{R}}=4.97 \mathrm{~min}$.
[4-(2,6-Dioxo-1,3-dipropyl-2,3,6,7-tetrahydro-1H-purin-8-yl)-cyclohexyl]-carbamic Acid Benzyl Ester, 11. See the procedure to make compound $\mathbf{3}$, starting material cis-trans mixture of 4-benzyloxycarbonylamino-cyclohexanecarboxylic acid (10) and gave a white solid (68% yield). HRMS $m / z=468.26067\left(\mathrm{MH}^{+}\right)$, calcd $=468.26053 ; t_{\mathrm{R}}=5.62 \mathrm{~min}$ (cis) and 5.74 min (trans).
trans-[4-(2,6-Dioxo-1,3-dipropyl-2,3,6,7-tetrahydro-1H-purin-8-yl)-cyclohexyl]-carbamic Acid Benzyl Ester, 12. See procedure to make compound $\mathbf{3}$, starting material all-trans 4-benzyloxycar-bonylamino-cyclohexanecarboxylic acid and gave a white solid. ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}) $\delta 11.2,11.5,21.4,21.4,30.1,32.9$, $37.8,43.3,45.3,49.5,66.7,106.7,127.8,128.2,128.6,136.5,149.0$, 151.0, 155.7, 156.4, 158.5; Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$; HRMS $m / z=468.26067\left(\mathrm{MH}^{+}\right)$, calcd $=468.26053$.
trans- N -[4-(2,6-Dioxo-1,3-dipropyl-2,3,6,7-tetrahydro-1 H -pu-rin-8-yl)-cyclohexyl]-acetamide, 14. Palladium on carbon (10\%; $0.015 \mathrm{~g})$ was added to a solution of $11(0.120 \mathrm{~g}, 0.257 \mathrm{mmol})$ in 3 mL of MeOH and $48 \mu \mathrm{~L}$ of $\mathrm{Ac}_{2} \mathrm{O}$. The vessel was flushed with nitrogen and charged with hydrogen $(\sim 15 \mathrm{psi})$. The mixture was stirred for 3 h and concentrated in vacuo, and the residue was redissolved in 10 mL of EtOAc, filtered, and washed with $10-\mathrm{mL}$ portions of satd NaHCO_{3} and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concd to give 0.059 g (60% yield) of a mixture of cis and trans isomers. The isomers were separated by preparative HPLC (acetonitrile/water, 30 min gradient, $10-90 \%$ ACN; C18 stationary phase) to give a white solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 0.85(\mathrm{~m}, 6 \mathrm{H}), 1.20(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.70(\mathrm{~m}, 7 \mathrm{H})$, $1.85(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{~m}, 4 \mathrm{H}), 2.95(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{dd}, 2 \mathrm{H}), 3.95$ (dd, $2 \mathrm{H}) ;$ HRMS $m / z=376.23445\left(\mathrm{MH}^{+}\right)$, calcd $=376.23432 ; t_{\mathrm{R}}=$ 3.64 min .
cis- N -[4-(2,6-Dioxo-1,3-dipropyl-2,3,6,7-tetrahydro-1H-purin-8-yl)-cyclohexyl]-acetamide, 13. Prepared according to the procedure for 14. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.95(\mathrm{~m}, 6 \mathrm{H}), 1.60-$ $2.00(\mathrm{~m}, 9 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{~m}, 4 \mathrm{H}), 3.05(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{dd}$, $2 \mathrm{H}), 4.10(\mathrm{dd}, 2 \mathrm{H}), 6.40(\mathrm{~d}, 1 \mathrm{H}) ; \mathrm{MS} \mathrm{m} / z=376.25\left(\mathrm{MH}^{+}\right) ; t_{\mathrm{R}}=$ 3.71 min .

4-(2,6-Dioxo-1,3-dipropyl-2,3,6,7-tetrahydro-1H-purin-8-yl)-bicyclo[2.2.2]octane-1-carboxylic Acid, 16. To a stirred mixture of 2.00 g (8.84 mmol) of bicyclo[2.2.2]octane-1,4-dicarboxylic acid monomethyl ester (15), ${ }^{17} 2.60 \mathrm{~g}(9.89 \mathrm{mmol})$ of 5,6-diamino-1,3-dipropyl-1H-pyrimidine-2,4-dione hydrochloride (1), 5.32 mL (38.1
mmol) of NEt_{3}, and 30 mL of anhydrous acetonitrile was added $3.76 \mathrm{~g}(9.89 \mathrm{mmol})$ of HATU. The reaction solution was stirred at rt for 1 h . The reaction mixture was concentrated in vacuo and combined with 40 mL of EtOAc and 40 mL of 10% citric acid. The aqueous layer was separated and washed twice with $40-\mathrm{mL}$ portions of EtOAc. The combined organic fractions were washed with $20-\mathrm{mL}$ portions of satd NaHCO_{3} and brine and concentrated in vacuo. The resultant solid was combined, in a $200-\mathrm{mL}$ roundbottom flask equipped with a condenser, with a mixture of 35 mL of $i-\mathrm{PrOH}$ and 35 mL of $1 \mathrm{~N} \mathrm{KOH} \mathrm{(} 35 \mathrm{mmol}$) and heated to reflux. After heating for 1 h , the reaction solution was concentrated in vacuo, taken up in 40 mL of water, and washed twice with $30-\mathrm{mL}$ portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The aqueous layer was acidified with concentrated HCl , and the resultant precipitate was collected by suction filtration to give $3.00 \mathrm{~g}(87 \%$ yield $)$ of an off-white solid. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.95$ (two triplets partially obscured, 6 H), $1.69(\mathrm{q}, 2 \mathrm{H}), 1.80(\mathrm{q}, 2 \mathrm{H}), 2.05(\mathrm{~m}, 12 \mathrm{H}), 4.00(\mathrm{q}, 2 \mathrm{H}), 4.11(\mathrm{q}$, $2 \mathrm{H}), 12.70(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.5,11.6$, $21.6,21.7,28.5,30.2,34.2,39.0,43.7,45.7,106.9,149.7,151.3$, 156.8, 161.8, 182.6; HRMS $m / z=389.21850\left(\mathrm{MH}^{+}\right)$, calcd $=$ $389.21833 ; t_{\mathrm{R}}=4.62 \mathrm{~min}$.

The following compounds were made in an analogous manner.
8-(4-Pentyl-bicyclo[2.2.2]oct-1-yl)-1,3-dipropyl-3,7-dihydro-purine-2,6-dione, 24. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.90(\mathrm{~m}, 9 \mathrm{H})$, $1.10(\mathrm{~m}, 2 \mathrm{H}), 1.20(\mathrm{~m}, 4 \mathrm{H}), 1.30(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~m}, 6 \mathrm{H}), 1.50(\mathrm{dq}$, $2 \mathrm{H}), 1.75(\mathrm{dq}, 2 \mathrm{H}), 1.85(\mathrm{~m}, 6 \mathrm{H}), 3.85(\mathrm{dd}, 2 \mathrm{H}), 3.95(\mathrm{dd}, 2 \mathrm{H})$, $12.80(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.6,11.9,14.5$, $21.7,23.0,23.8,31.0,31.1,31.17,33.2,34.1,41.9,43.5,45.5$, 107.2, 149.3, 151.5, 155.7, 162.7; Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$; HRMS $m / z=415.30689\left(\mathrm{MH}^{+}\right)$, calcd $=415.30675 ; t_{\mathrm{R}}=8.52$ min.

4-(2,6-Dioxo-1,3-dipropyl-2,3,6,7-tetrahydro-1H-purin-8-yl)-bicyclo[2.2.2]octane-1-carboxylic Acid Methyl Ester, 25. Acid $16(1.50 \mathrm{~g}, 3.86 \mathrm{mmol})$ was combined with 60 mL of MeOH and 10 drops of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$. The reaction solution was brought to reflux until consumption of starting material ceased. Saturated NaHCO_{3} was then added until neutral pH , and the reaction mixture was concentrated in vacuo. The residue was taken up in EtOAc and washed with satd NaHCO_{3} and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The EtOAc solution was concentrated in vacuo to give $1.51 \mathrm{~g}(97 \%$ yield) of a white solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.90(\mathrm{~m}$, $6 \mathrm{H}), 1.58-1.80(\mathrm{~m}, 4 \mathrm{H}), 1.90(\mathrm{~m}, 6 \mathrm{H}), 1.98(\mathrm{~m}, 6 \mathrm{H}), 3.6(\mathrm{~s}, 3 \mathrm{H})$, $4.00(\mathrm{~m}, 4 \mathrm{H}), 12.00(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.6$, $11.8,21.7,28.1,28.5,30.2,34.1,39.2,52.2,107.3,149.3,151.5$, $155.9,161.6,178.1 ; \mathrm{MS} \mathrm{m} / z=403.13\left(\mathrm{MH}^{+}\right) ; t_{\mathrm{R}}=5.33 \mathrm{~min}$.

8-(4-Hydroxymethyl-bicyclo[2.2.2]oct-1-yl)-1,3-dipropyl-3,7-dihydro-purine-2,6-dione, 26. Ester 25 ($1.40 \mathrm{~g}, 3.48 \mathrm{mmol}$) was combined with $\mathrm{LiBH}_{4}(0.379 \mathrm{~g}, 17.4 \mathrm{mmol})$, $\mathrm{MeOH}(0.141 \mathrm{~mL}$, 3.48 mmol), and 100 mL of THF, and the resultant mixture was brought to reflux for 18 h . After cooling to $\mathrm{rt}, 50 \mathrm{~mL}$ of 1 M HCl were added, and the mixture was concentrated in vacuo. The residue was dissolved in EtOAc and washed with 1 M HCl , satd NaHCO_{3}, and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The EtOAc solution was concentrated in vacuo to give $1.15 \mathrm{~g}(88 \%$ yield $)$ of a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.89(\mathrm{~m}, 6 \mathrm{H}), 1.50(\mathrm{~m}, 6 \mathrm{H}), 1.55-$ $1.80(\mathrm{~m}, 4 \mathrm{H}), 1.93(\mathrm{~m}, 6 \mathrm{H}), 3.28(\mathrm{~s}, 2 \mathrm{H}), 3.95(\mathrm{dd}, 4 \mathrm{H}), 4.05(\mathrm{dd}$, $4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 11.2,11.5,21.4,27.7,30.2$, 30.3, 34.3, 39.2, 43.2, 45.2, 71.2, 106.8, 148.8, 151.1, 155.4, 161.8; Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N} ;$ HRMS $m / z=375.23916\left(\mathrm{MH}^{+}\right)$, calcd $=375.23907 ; t_{\mathrm{R}}=4.34 \mathrm{~min}$.

4-(2,6-Dioxo-1,3-dipropyl-2,3,6,7-tetrahydro-1H-purin-8-yl)-bicyclo[2.2.2]octane-1-carbaldehyde, 27. To a solution of 0.092 $\mathrm{g}(0.246 \mathrm{mmol})$ of 26 in 5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $0.125 \mathrm{~g}(0.295$ mmol) Dess-Martin periodinane. The reaction mixture was stirred at rt until the oxidation was complete. The reaction solution was filtered through a plug of basic alumina, washed with satd NaHCO_{3}, and brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was concentrated in vacuo to give 0.057 g (62% yield) of an off-white solid. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.90(\mathrm{~m}, 6 \mathrm{H}), 1.60-1.80$ $(\mathrm{m}, 10 \mathrm{H}), 2.05(\mathrm{~m}, 6 \mathrm{H}), 4.00(\mathrm{~m}, 4 \mathrm{H}), 9.50(\mathrm{~s}, 1 \mathrm{H}), 12.00(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.2,10.5,20.3,23.7,24.4,28.4$,
33.5, 42.6, 105.9, 147.9, 150.1, 154.5, 159.8, 204.1; HRMS $m / z=$ $373.22358\left(\mathrm{MH}^{+}\right)$, calcd $=373.22342 ; t_{\mathrm{R}}=4.86 \mathrm{~min}$.

2-((4-(2,6-Dioxo-1,3-dipropyl-2,3,6,7-tetrahydro-1H-purin-8-yl)bicyclo[2.2.2]octan-1-yl)(methyl)amino)acetic Acid, 20. To a stirred mixture of $0.100 \mathrm{~g}(0.257 \mathrm{mmol})$ of $\mathbf{1 6}, 0.039 \mathrm{~g}(0.257 \mathrm{mmol})$ of sarcosine hydrochloride, $0.143 \mathrm{~mL}(1.03 \mathrm{mmol})$ of NEt_{3}, and 2 mL of anhydrous acetonitrile was added $0.103 \mathrm{~g}(0.270 \mathrm{mmol})$ of HATU. The reaction solution was stirred at rt for 16 h . The reaction mixture was concentrated in vacuo and combined with 10 mL of EtOAc and 10 mL of 10% citric acid. The aqueous layer was separated and washed twice with $10-\mathrm{mL}$ portions of EtOAc. The combined organic fractions were washed with $10-\mathrm{mL}$ portions of satd NaHCO_{3} and brine and concentrated in vacuo. The resultant solid was dissolved in a mixture of 5 mL of MeOH and 5 mL of 1 N NaOH and stirred for 16 h . The reaction solution was concentrated in vacuo, taken up in 10 mL of water, and washed twice with $10-\mathrm{mL}$ portions of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The aqueous layer was acidified with concentrated HCl , and the resultant precipitate was collected by suction filtration to give 0.094 g (77% yield) of an off-white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.90(\mathrm{~m}, 6 \mathrm{H}), 1.65$ $(\mathrm{m}, 4 \mathrm{H}), 1.75(\mathrm{dt}, 2 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~m}, 12 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H})$, $3.95(\mathrm{dd}, 2 \mathrm{H}), 4.00(\mathrm{dd}, 2 \mathrm{H}), 4.10(\mathrm{~s}, 2 \mathrm{H}), 12.05(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.3,11.6,11.7,28.2,30.2,34.2,38.9,40.1$, $151.1,173.9,176.9 ; \mathrm{MS} \mathrm{m} / z=460.18\left(\mathrm{MH}^{+}\right) ; t_{\mathrm{R}}=3.91 \mathrm{~min}$.

The following compounds were made in an analogous manner.
4-(2,6-Dioxo-1,3-dipropyl-2,3,6,7-tetrahydro-1H-purin-8-yl)-bicyclo[2.2.2]octane-1-carboxylic Acid (2-Dimethylamino-ethyl)amide, 17. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.95(\mathrm{~m}, 6 \mathrm{H}), 1.68(\mathrm{dt}$, $2 \mathrm{H}), 1.75(\mathrm{dt}, 2 \mathrm{H}), 1.90(\mathrm{~m}, 6 \mathrm{H}), 2.00(\mathrm{~m}, 6 \mathrm{H}), 2.95(\mathrm{~s}, 6 \mathrm{H}), 3.30$ (m, 2H), 3.65 (m, 2H), 3.98 (dd, 2H), 4.08 (dd, 2H), $10.40(\mathrm{~s}, 1 \mathrm{H})$; MS $m / z=459.17\left(\mathrm{MH}^{+}\right) ; t_{\mathrm{R}}=3.41 \mathrm{~min}$.
\{[4-(2,6-Dioxo-1,3-dipropyl-2,3,6,7-tetrahydro-1H-purin-8-yl)-bicyclo[2.2.2]octane-1-carbonyl]-amino\}-acetic Acid Methyl Ester, 18. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.97(\mathrm{~m}, 6 \mathrm{H}), 1.68-1.84$ $(\mathrm{m}, 4 \mathrm{H}), 1.98(\mathrm{~m}, 6 \mathrm{H}), 2.06(\mathrm{~m}, 6 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 4.06(\mathrm{~s}, 6 \mathrm{H})$, $6.25(\mathrm{t}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta 11.0,11.2,20.8$, 20.8, 27.7, 29.6, 33.2, 37.9, 41.9, 44.2, 60.0, 72.2, 106.4, 147.3, $150.6,153.9,160.3,171.3,176.5 ; \mathrm{MS} m / z=460.30\left(\mathrm{MH}^{+}\right) ; t_{\mathrm{R}}=$ 4.26 min .
\{[4-(2,6-Dioxo-1,3-dipropyl-2,3,6,7-tetrahydro-1H-purin-8-yl)-bicyclo[2.2.2]octane-1-carbonyl]-amino\}-acetic Acid, 19. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.87(\mathrm{t}, 3 \mathrm{H}), 0.90(\mathrm{t}, 3 \mathrm{H}$ partially obscured), $1.59(\mathrm{q}, 2 \mathrm{H}), 1.72(\mathrm{q}, 2 \mathrm{H}), 1.92(\mathrm{~m}, 6 \mathrm{H}), 1.99(\mathrm{~m}, 6 \mathrm{H})$, $3.94(\mathrm{t}, 2 \mathrm{H}), 4.03(\mathrm{t}, 2 \mathrm{H}$ partially obscured), $4.07(\mathrm{~m}, 2 \mathrm{H}), 6.06(\mathrm{~s}$, $1 \mathrm{H}), 12.18(\mathrm{~s}, 1 \mathrm{H}), 13.55(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.2,11.3,21.2,21.3,28.4,29.8,33.8,38.9,40.9,43.5,45.5$, $106.1,149.5,150.6,156.3,161.4,174.5,177.0 ; \mathrm{MS} \mathrm{m} / \mathrm{z}=446.06$ $\left(\mathrm{MH}^{+}\right)$.

3-\{[4-(2,6-Dioxo-1,3-dipropyl-2,3,6,7-tetrahydro-1H-purin-8-yl)-bicyclo[2.2.2]octane-1-carbonyl]-amino\}-propionic Acid Methyl Ester, 21. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.96(\mathrm{~m}, 6 \mathrm{H}), 1.63-$ $1.83(\mathrm{~m}, 4 \mathrm{H}), 1.83-2.07(\mathrm{~m}, 12 \mathrm{H}), 2.56(\mathrm{t}, 2 \mathrm{H}), 3.55(\mathrm{dt}, 2 \mathrm{H})$, $3.72(\mathrm{~s}, 3 \mathrm{H}), 4.02(\mathrm{dt}, 2 \mathrm{H}), 4.10(\mathrm{dt}, 2 \mathrm{H}), 6.53(\mathrm{t}, 1 \mathrm{H}) ; \mathrm{MS} \mathrm{m} / \mathrm{z}=$ $474.40\left(\mathrm{MH}^{+}\right) ; t_{\mathrm{R}}=4.32 \mathrm{~min}$.

1-[4-(2,6-Dioxo-1,3-dipropyl-2,3,6,7-tetrahydro-1H-purin-8-yl)-bicyclo[2.2.2]octane-1-carbonyl]-piperidine-4-carboxylic Acid, 22. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.84(\mathrm{t}, 3 \mathrm{H}), 0.085(\mathrm{t}, 3 \mathrm{H}), 1.50-$ $1.68(\mathrm{~m}, 6 \mathrm{H}), 1.84-1.92(\mathrm{~m}, 14 \mathrm{H}), 2.44(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{~m}, 2 \mathrm{H})$, $3.78(\mathrm{t}, 2 \mathrm{H}), 3.91(\mathrm{t}, 2 \mathrm{H}), 4.15(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 11.9,12.0,22.8,22.8,29.6,30.1,31.3,35.4,41.5,42.4$, $46.5,79.2,79.6,79.8,80.0,122.6,130.4,149.9,152.6,153.3,156.5$, $162.6,177.5,178.4 ; t_{\mathrm{R}}=4.20 \mathrm{~min}$.
[4-(2,6-Dioxo-1,3-dipropyl-2,3,6,9-tetrahydro-1H-purin-8-yl)-bicyclo[2.2.2]oct-1-yl]-acetaldehyde, 30. To a stirred suspension of methoxymethyl triphenylphosphonium chloride ($1.1 \mathrm{~g}, 3.2 \mathrm{mmol}$) in THF (60 mL) at $-78^{\circ} \mathrm{C}$ was added a solution of KHMDS (0.5 M in toluene, $10 \mathrm{~mL}, 5 \mathrm{mmol}$). The resulting yellow mixture was stirred at this temperature for 1.5 h , and a solution of $27(372 \mathrm{mg}$, $1.0 \mathrm{mmol})$ in THF (12 mL) was added over a period of 20 min . The mixture was held at $-78^{\circ} \mathrm{C}$ for 6 h and allowed to reach ambient temperature overnight (12 h). The reaction mixture was
partitioned between satd aqueous $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$ and EtOAc (100 mL), and the aqueous phase was extracted with EtOAc (50 mL). The combined organic extracts were washed with satd aqueous NaCl $(100 \mathrm{~mL})$, concentrated in vacuo, redissolved in THF, and concentrated to a volume of approximately 20 mL . To the solution was added an equal volume of 1 N HCl , and the mixture was stirred overnight. The mixture was diluted with EtOAc $(20 \mathrm{~mL})$, and the aqueous phase was separated and extracted with EtOAc (10 mL). The combined organic phases were then washed with saturated aqueous $\mathrm{NaCl}(2 \times 25 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo. The resulting orange oil was purified in batches by radial chromatography (2 mm plate) using $3 \% \mathrm{MeOH}$ and 3% THF in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent. Product-containing fractions were combined and concentrated to afford $290 \mathrm{mg}(75 \%)$ of a white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.91(\mathrm{t}, 3 \mathrm{H}), 0.93(\mathrm{t}, 3 \mathrm{H}), 1.63(\mathrm{~m}$, $2 \mathrm{H}), 1.77(\mathrm{~m}, 2 \mathrm{H}$, partially obscured $), 1.82(\mathrm{~m}, 6 \mathrm{H}), 2.01(\mathrm{~m}, 6 \mathrm{H})$, $2.32(\mathrm{~s}, 2 \mathrm{H}), 3.95(\mathrm{~m}, 2 \mathrm{H}), 4.07(\mathrm{~m}, 2 \mathrm{H}), 12.74(\mathrm{~s}, 1 \mathrm{H}) ; \mathrm{MS} \mathrm{m} / \mathrm{z}=$ $387.37\left(\mathrm{MH}^{+}\right) ; t_{\mathrm{R}}=7.46 \mathrm{~min}$.
[4-(2,6-Dioxo-1,3-dipropyl-2,3,6,9-tetrahydro-1H-purin-8-yl)-bicyclo[2.2.2]oct-1-yl]-acetic Acid, 31. To a solution of 30 (170 $\mathrm{mg}, 0.440 \mathrm{mmol})$ in t - $\mathrm{BuOH}(10 \mathrm{~mL}$) and 2-methyl-2-butene (10 equiv, $4.4 \mathrm{mmol}, 470 \mu \mathrm{~L}$), cooled with the aid of an ice bath, was added NaClO_{2} (1.5 equiv, 0.66 mmol). The resulting yellow solution was allowed to reach ambient temperature over a period of 14 h and then concentrated in vacuo. The resulting oily residue was partitioned between water (10 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The aqueous phase was acidified by the dropwise addition of concentrated HCl , and the resulting precipitate was collected, washed with water, and dried to afford $105 \mathrm{mg}(59 \%)$ as a white powder. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.91$ (t, 3H), 0.93 (t, 3H), 1.63 (m, $2 \mathrm{H}), 1.77(\mathrm{~m}, 2 \mathrm{H}$, partially obscured), $1.82(\mathrm{~m}, 6 \mathrm{H}), 2.01(\mathrm{~m}, 6 \mathrm{H})$, $2.32(\mathrm{~s}, 2 \mathrm{H}), 3.95(\mathrm{~m}, 2 \mathrm{H}), 4.07(\mathrm{~m}, 2 \mathrm{H}), 12.74(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.2,11.3,21.3,21.3,30.1,30.6,33.6,43.0$, 43.1, 43.3, 45.3, 107.1, 148.8, 151.0, 156.3, 161.9, 176.5; HRMS $m / z=403.23414\left(\mathrm{MH}^{+}\right)$, calcd $=403.23398$.
(E)-3-[4-(2,6-Dioxo-1,3-dipropyl-2,3,6,7-tetrahydro-1H-purin-8-yl)-bicyclo[2.2.2]oct-1-yl]-acrylic Acid, 28. Trimethylphosphono acetate $(0.161 \mathrm{~g}, 0.886 \mathrm{mmol})$ was dissolved in 12 mL of toluene and cooled to between 0 and $5{ }^{\circ} \mathrm{C}$. KHMDS $(0.5 \mathrm{M}$ in toluene; 3.54 mL) was added dropwise while stirring over a period of 5 min. After an additional 30 min at $0-5^{\circ} \mathrm{C}, 0.300 \mathrm{~g}(0.805 \mathrm{mmol})$ of 27 was added, and the reaction was allowed to warm to rt and stirred for 16 h . The reaction mixture was concentrated in vacuo. To the dissolved crude material in 25 mL of MeOH and 10 mL of water was added 0.150 g LiOH , and the mixture was stirred at rt overnight, concentrated in vacuo, and redissolved in 15 mL of water. The water layer was extracted thrice with $20-\mathrm{mL}$ portions of EtOAc and acidified with concentrated HCl , and the precipitate was collected by suction filtration to give 0.190 g (57% yield) of the trans-acrylic acid product. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.78(2$ t partially obscured, 6 H$), 1.50(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{~m}, 6 \mathrm{H}), 1.88(\mathrm{~m}$, $6 \mathrm{H}), 3.83(\mathrm{dd}, 1 \mathrm{H}), 3.93(\mathrm{dd}, 2 \mathrm{H}), 5.67(\mathrm{~d}, 1 \mathrm{H}), 6.85(\mathrm{~d}, 1 \mathrm{H}), 12.27$ $(\mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.2,11.4,21.3,21.3$, $30.0,30.2,34.0,34.2,43.4,45.3,106.5,118.2,149.2,150.9,156.2$, 158.1, 161.7, 170.6; Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N} ; ~ H R M S ~ m / z=$ $415.23414\left(\mathrm{MH}^{+}\right)$, calcd $=415.23398 ; t_{\mathrm{R}}=4.80 \mathrm{~min}$.

3-[4-(2,6-Dioxo-1,3-dipropyl-2,3,6,7-tetrahydro-1H-purin-8-yl)-bicyclo[2.2.2]oct-1-yl]-propionic Acid, 29. Acrylic acid 28 $(0.050 \mathrm{~g})$ was dissolved in 5 mL of MeOH and combined with 0.005 g of $10 \% \mathrm{Pd} / \mathrm{C}$. The reaction vessel was purged three times with N_{2} and then placed under a balloon of H_{2} gas. After 2 h , the reaction mixture was filtered and concd to give 0.037 g (74% yield) of a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 0.598(\mathrm{t}, 3 \mathrm{H})$, $0.604(\mathrm{t}, 3 \mathrm{H}), 1.14(\mathrm{~m}, 8 \mathrm{H}), 1.28(\mathrm{tq}, 2 \mathrm{H}), 1.41(\mathrm{tq}, 2 \mathrm{H}), 1.59(\mathrm{~m}$, $6 \mathrm{H}), 1.86(\mathrm{dd}, 2 \mathrm{H}), 3.57(\mathrm{t}, 2 \mathrm{H}), 3.67(\mathrm{t}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta 11.4,11.5,21.2,29.0,30.2,30.2,30.4,33.6,36.0$, $42.3,44.5,106.7,147.7,151.0,154.3,161.0,175.3 ; \operatorname{mp} 278{ }^{\circ} \mathrm{C}$; Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N} ; \mathrm{HRMS} m / z=417.24976\left(\mathrm{MH}^{+}\right)$, calcd $=417.24963 ; t_{\mathrm{R}}=4.90 \mathrm{~min}$.

4-[4-(2,6-Dioxo-1,3-dipropyl-2,3,6,7-tetrahydro-1H-purin-8-yl)-bicyclo[2.2.2]oct-1-yl]-butyric Acid Methyl Ester, 32. A
solution of $\mathbf{3 0}$ ($233 \mathrm{mg}, 0.604 \mathrm{mmol}$) and (triphenyl-phospha-nylidene)-acetic acid methyl ester ($242 \mathrm{mg}, 0.725 \mathrm{mmol}$) in THF $(25 \mathrm{~mL})$ was heated at $75^{\circ} \mathrm{C}$ for 6 h . The reaction mixture was allowed to cool to rt and concentrated in vacuo to afford an oil that was purified by radial chromatography (2 mm plate) using $2-5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent. The resulting mixture of cis/ trans-olefins was dissolved in $\mathrm{EtOH}(6 \mathrm{~mL})$ and hydrogenated using Pd on carbon ($10 \mathrm{~mol} \%$) and a balloon of hydrogen affixed to a 3-way stopcock/ground glass adapter. After stirring overnight, the mixture was degassed, filtered through Celite, and concentrated in vacuo to give a brittle foam ($140 \mathrm{mg}, 54 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.93(\mathrm{~m}, 6 \mathrm{H}), 1.11-1.15(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.68(\mathrm{~m}, 10 \mathrm{H})$, $1.74(\mathrm{dd}, 2 \mathrm{H}), 1.92-1.96(\mathrm{~m}, 6 \mathrm{H}), 2.65(\mathrm{dd}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H})$, 3.99 (dd, 2H), 4.06 (dd, 2H), 11.55 ($\mathrm{s}, 1 \mathrm{H})$; Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{4}\right)$ $\mathrm{C}, \mathrm{H}, \mathrm{N} ; \mathrm{HRMS} m / z=445.28102\left(\mathrm{MH}^{+}\right)$, calcd $=445.28093 ; t_{\mathrm{R}}$ $=8.93 \mathrm{~min}$.

4-[4-(2,6-Dioxo-1,3-dipropyl-2,3,6,7-tetrahydro-1H-purin-8-yl)-bicyclo[2.2.2]oct-1-yl]-butyric Acid, 33. A solution of ester $32(45 \mathrm{mg}, 100 \mu \mathrm{~mol})$ in THF (4 mL) was treated with 1 M LiOH $(2 \mathrm{~mL})$, and the resulting turbid solution was stirred at rt overnight. The solution was concentrated in vacuo, diluted with water (2 mL), and acidified by the dropwise addition of concentrated HCl . The resulting precipitate was collected, washed with water, and dried to afford a white powder ($35 \mathrm{mg}, 81 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 0.96(\mathrm{t}, 3 \mathrm{H}), 1.00(\mathrm{t}, 3 \mathrm{H}), 1.28(\mathrm{dd}, 2 \mathrm{H}), 1.60(\mathrm{~m}, 8 \mathrm{H})$, $1.68(\mathrm{q}, 2 \mathrm{H}), 1.82(\mathrm{q}, 2 \mathrm{H}), 2.05(\mathrm{~m}, 6 \mathrm{H}), 2.48(\mathrm{t}, 2 \mathrm{H}), 4.01(\mathrm{t}, 2 \mathrm{H})$, $4.19(\mathrm{t}, 2 \mathrm{H}), 12.59(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.1$, $11.3,18.1,21.2,21.4,30.5,30.6,32.8,34.1,40.6,43.5,45.7,106.2$, $148.8,150.7,156.1,162.1,178.2 ; \operatorname{HRMS} m / z=431.26540\left(\mathrm{MH}^{+}\right)$, calcd $=431.26528 ; t_{\mathrm{R}}=7.52 \mathrm{~min}$.

Human Adenosine Receptor Screening: Initial screening was of a solution of the antagonist $(1 \mu \mathrm{M})$ incubated with membranes in 50 mM HEPES, $\mathrm{pH} 7.4,1 \mathrm{mM}$ EDTA, $5 \mathrm{mM} \mathrm{MgCl}_{2}$, and 1 U / mL adenosine deaminase. DMSO was included in all assays except hA_{3} at a final concentration of 5%. Radioligands consisted of the following: $\mathrm{hA}_{1}, 0.3 \mathrm{nM}{ }^{125} \mathrm{I}$-aminobenzyladenosine $\left({ }^{125} \mathrm{I}-\right.$ ABA); $\mathrm{hA}_{2 \mathrm{~A}}, 0.7 \mathrm{nM}{ }^{125} \mathrm{I}-\mathrm{ZM} 241385 ; \mathrm{hA}_{2 \mathrm{~B}}, 0.5 \mathrm{nM}{ }^{125} \mathrm{I}-3-(4-$ aminobenzyl)-8-phenyloxyacetate-1-propyl-xanthine; and $\mathrm{hA}_{3}, 0.6$ $\mathrm{nM}{ }^{125} \mathrm{I}-\mathrm{ABA}$. Nonspecific binding was measured in the presence of $50 \mu \mathrm{M}$ xanthine amine congener or $10 \mu \mathrm{M}$ BW-1433 $\left(\mathrm{hA}_{3}\right)$.

Rat Adenosine Receptor Screening: Compounds were incubated at room temperature for 90 min with radioligand $\left(2 \mathrm{nM}{ }^{3} \mathrm{H}\right.$ CPX for $\mathrm{rA}_{1} ; 0.5-1.2 \mathrm{nM}{ }^{3} \mathrm{H}-\mathrm{ZM} 241385$ for $\mathrm{rA}_{2 \mathrm{~A}}$), 50 mM TrisHCl buffer (pH 7.4), adenosine deaminase ($2 \mathrm{U} / \mathrm{mL}$), and $100-\mu \mathrm{L}$ aliquots of crude membrane suspensions ($10-20 \mu \mathrm{~g}$ protein) prepared from either rat brain cortex (for rA_{1}) or rat brain striatum (for $\mathrm{rA}_{2 \mathrm{~A}}$). Incubations were terminated by the addition of ice-cold 50 mM Tris- HCl buffer and the collection of membranes was done on Whatman GF/C glass fiber filters by vacuum filtration. Membrane-bound radioactivity was quantified by liquid scintillation counting. Values of K_{i} were determined from concentrationresponse relationships for each compound to displace binding of radioligand, using GraphPad Prism (GraphPad, San Diego, CA).

All experiments were conducted in accordance with the NIH Guide for the Care and Use of Laboratory Animals, and the protocols were approved by the Institutional Animal Care and Use Committee.

Male Sprague-Dawley rats were purchased from Charles River Laboratories (Raleigh, NC) and housed in the Biogen virus-free laboratory animal facility in ventilated isolator cage racks. Animals were allowed to acclimatize for 4 days prior to the beginning of the study. Rats had ad libitum access to irradiated standard chow (LabDiet Prolab 5P75 Isopro RMH 3000) and sterile water throughout the acclimatization and experimental period.

Isolation of Atria From Rat Heart. Hearts were removed from the rats and placed in petri dishes containing Krebs Henseleit (Krebs) buffer prewarmed to $37{ }^{\circ} \mathrm{C}$ and bubbled with $95 \% \mathrm{O}_{2} / 5 \%$ CO_{2}. The composition of Krebs buffer was $118 \mathrm{mM} \mathrm{NaCl}, 4.7 \mathrm{mM}$ $\mathrm{KCl}, 1.2 \mathrm{mM} \mathrm{MgSO}_{4}, 25 \mathrm{mM} \mathrm{NaHCO} 3,1.2 \mathrm{mM} \mathrm{KH}_{2} \mathrm{PO}_{4}, 2.5 \mathrm{mM}$ CaCl_{2}, and 11 mM glucose, pH 7.4 .

The right atrium was dissected and cleaned of surrounding myocardial and vascular tissue. Two lengths of thread were attached at opposite ends of the atrium. One thread anchored the tissue to a glass rod, and the other was connected to an isometric force transducer. The tissue was suspended in a water-jacketed reservoir warmed to $37{ }^{\circ} \mathrm{C}$ and bubbled with $95 \% \mathrm{O}_{2} / 5 \% \mathrm{CO}_{2}$. A preload tension of 2 grams (g) was applied using a precalibrated Gould recorder. Hung tissue was washed with warm, oxygenated Krebs buffer, while maintaining 2 g of tension. Baseline atrial beat rate was measured on Ponemah software from Gould Instruments (Valley View, Ohio).

Determination of EC_{50} of 29 Using the CPA Dose Reversal Paradigm. Isoproterenol (30 nM) was added to all baths containing atria to increase the baseline atrial rate to between 350 and 400 beats per minute (bpm). Following rate stabilization, 130 nM CPA was added to baths to cause a 75% reduction in atrial beating rate (control 0). Increasing concentrations of 27 were then added to the baths until the rate was restored to maximum and the effective concentration at which 50% response was obtained $\left(\mathrm{EC}_{50}\right)$ was determined. Five atria were used in this experiment. The effects of compound 29 were fully reversible (in the presence of CPA) after washout of the compound from the isolated atria.

Blockade Paradigm: Schild Plot ($\mathbf{p A}_{2}$) Analysis. Isoproterenol (30 nM) was added to all baths containing atria to increase the baseline atrial rate to between 350 and 400 bpm . Varying concentrations of $29(0.3 \mathrm{nM}, 3.0 \mathrm{nM}$, and 30.0 nM ; or vehicle control (dimethylsulfoxide [DMSO])) were then added to isolated tissue baths with beating atria, and 5 min was allowed to ensure stabilization (control 0). Increasing concentrations of CPA from 1 nM to $30 \mu \mathrm{M}$ were added cumulatively until the atrial rate was lowered to zero. The EC_{50} was determined for the vehicle control and each of the 29 concentrations. Schild analysis was used to calculate the affinity of $\mathbf{2 9}$, the competitive antagonist, for its receptor $\left(\mathrm{pA}_{2}\right)$. Five or six atria were used for each 29 concentration and the vehicle control.

Statistical Analysis. In the dose reversal experiment, the mean and standard error of the mean (SEM) of the atrial beating rate (bpm) were calculated at baseline and following the addition of isoproterenol, CPA, and each dose of 29. The mean (\pm SEM $)$ percent change from baseline for the control (0) was calculated as (CPA bpm at baseline - CPA bpm at baseline)/(isoproterenol bpm at baseline - CPA bpm at baseline) $\times 100$. The mean $(\pm$ SEM $)$ percent change from baseline for each 29 dose was calculated as (29 dose bpm - CPA baseline bpm)/(isoproterenol bpm at baseline - CPA bpm at baseline) $\times 100$. The EC_{50} was determined as the effective concentration of 29 at which a 50% response was obtained. In the blockade experiment, atrial rates were recorded at baseline and following addition of isoproterenol, 29, or vehicle control (control 0) and each CPA dose. The percent change was calculated as $(\mathrm{CPA}$ dose $\mathrm{bpm} \mathbf{- 2 9} \mathrm{bpm}$ [control])/(29 bpm [control] bpm) \times 100. Using the data from the blockade experiment, a Schild analysis was performed to determine the affinity of 29, the antagonist, for its receptor with CPA as the agonist $\left(\mathrm{pA}_{2}\right)$.

Rat Oral Efficacy Screen: Rats were placed into metabolic cages and dosed by gavage with various doses of 29 . The doses and group sizes were: vehicle ($0.5 \% \mathrm{CMC} ; n=3$); 29, 0.001 mg / $\mathrm{kg}(n=4), 0.003 \mathrm{mg} / \mathrm{kg}(n=4), 0.01 \mathrm{mg} / \mathrm{kg}(n=4), 0.03 \mathrm{mg} / \mathrm{kg}$ $(n=5), 0.1 \mathrm{mg} / \mathrm{kg}(n=5), 0.3 \mathrm{mg} / \mathrm{kg}(n=5), 1.0 \mathrm{mg} / \mathrm{kg}(n=3)$, and $3.0 \mathrm{mg} / \mathrm{kg}(n=3)$. Urine was collected for 4 h after dosing.

Urine volume was measured gravimetrically, and sodium and potassium concentrations were determined by flame photometry. Urine flow, UNaV, and UKV were calculated and are shown as units per hour as an average for the 4-hour collection period.

Acknowledgment. We thank, Gnanasambandam Kumaravel, Hexi Chang, Carol Ensinger, and Eric Whalley for their numerous contributions to the adenosine A_{1} anatagonist project. We also acknowledge Xiaopeng Hronowski for HRMS analyses.

Supporting Information Available: Experimental details (details of HPLC, MS, and elemental analyses of compounds) and
data for pA_{2} determination and statistical analysis. This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) Ray, C. J.; Marshall, J. M. The cellular mechanisms by which adenosine evokes release of nitric oxide from rat aortic endothelium. J. Physiol. 2006, 570, 85-96. Phillis, J. W. Adenosine and adenine nucleotides as regulators of cerebral blood flow: Roles of acidosis, cell swelling, and KATP channels. Crit. Rev. Neurobiol. 2004, 16, 237-270. Turner, C. P.; Seli, M.; Ment, L.; Stewart, W.; Yan, H.; Johansson, B.; Fredholm, B. B.; Blackburn, M.; Rivkees, S. A. A adenosine receptors mediate hypoxia-induced ventriculomegaly. Proc. Natl. Acad. Sci. U.S.A. 2003, 100, 11718-11722. Frenguelli, B. G.; Llaudet, E.; Dale, N. High-resolution real-time recording with microelectrode biosensors reveals novel aspects of adenosine release during hypoxia in rat hippocampal slices. J. Neurochem. 2003, 86, 1506-1515. Sullivan, G. W.; Linden, J. The role of adenosine in tissue protection during ischemia-reperfusion. In Sensing, signaling and cell adaptation; Storey, K. B., Storey, J. M., Eds.; Elsevier Science B.V.: Amsterdam, The Netherlands, 2002; pp 47-59. Gao, E.; Kaplan, J. L.; Shi, Y.; Victain, M.; Dalsey, W. C.; De Garavilla, L. J. Cardiovasc. Pharmacol. 2001, 38, 384-394.
(2) Moser, G. H.; Schrader, J.; Duessen, A. Turnover of adenosine in plasma of human and dog blood. Am. J. Physiol. 1989, 25, 799806.
(3) (a) Palczewski, K.; Kumasaka, T.; Hori, T.; Behnke, C. A.; Motoshima, H.; Fox, B. A.; Le Trong, I.; Teller, D. C.; Okada, T.; Stenkamp, R. E.; Yamamoto, M.; Miyano, M. Crystal structure of rhodopsin: A G-protein-coupled receptor. Science 2000, 289, 739745. (b) Biancucci, A.-M.; Bigi, M.; Biagi, G.; Giorgi, I.; Livi, O.; Scartoni, V. A 3D model of the human A_{1} adenosine receptor. An evaluation of the binding free-energy with ligands. Drug Des. Discovery 1998, 15, 149-156.
(4) Linden, J. Structure and function of A_{1} adenosine receptors. FASEB J. 1991, 5, 2668-2676.
(5) (a) Barbhaiya, H.; McClain, R.; IJzerman, A.; Rivkees, S. A. Sitedirected mutagenesis of the human A_{1} adenosine receptor: Influences of acidic and hydroxy residues in the first four transmembrane domains on ligand binding. Mol. Pharmacol. 1996, 50 (6), 16351642. (b) Tucker, A. L.; Robeva, A. S.; Taylor, H. E,; Holeton, D.; Bockner, M.; Lynch, K. R.; Linden, J. A 1 adenosine receptors. Two amino acids are responsible for species differences in ligand recognition. J. Biol. Chem. 1994, 269 (45), 27900-27906. (c) Olah, M. E.; Ren, H.; Ostrowski, J.; Jacobson, K. A.; Stiles, G. L. Cloning, expression, and characterization of the unique bovine A_{1} adenosine receptor. Studies on the ligand binding site by site-directed mutagenesis. J. Biol. Chem. 1992, 267 (15), 10764-10770. (d) Olah, M. E.; Jacobson, K. A.; Stiles, G. L. Role of second extracellular loop of adenosine receptors in agonist and antagonist binding. J. Biol. Chem. 1994, 269 (40), 24692-24698.
(6) Jacobson, K. A.; Gao, Z. G. Adenosine receptors as therapeutic targets. Nat. Rev. Drug Discovery 2006, 5, 247-264. Dhalla, A. V.; Shryock, J. C.; Shreeniwas, R.; Belardinelli, L. Pharmacology and therapeutic applications of A_{1} adenosine receptor ligands Curr. Top. Med. Chem. 2003, 3, 369-385. Poulsen, S.; Quinn, R. J. Adenosine receptors: New opportunities for future drugs. Bioorg. Med. Chem. 1998, 6, 619-641.
(7) Gottlieb, S. S.; Brater, D. C.; Thomas, I.; Havranek, E.; Bourge, R.; Goldman, S.; Dyer, F.; Gomez, M.; Bennett, D.; Ticho, B.; Beckman, E.; Abraham, W. T. BG9719 (CVT-124), an A Adenosine receptor antagonist, protects against the decline in renal function observed with diuretic therapy. Circulation 2002, 105 (11), 1348-1353. Gottlieb, S. S.; Skettino, S. L.; Wolff, A; Beckman, E; Fisher, M. L.; Freudenberger, R.; Gladwell, T.; Marshall, J.; Cines, M.; Bennett, D.; Littschwager, E. B. Effects of BG9719 (CVT-124), an A Aadenosine receptor antagonist, and furosemide on glomerular filtration rate and natriuresis in patients with congestive heart failure. J. Am. Coll. Cardiol. 2000, 35 (1), 56-59.
(8) Shimada, J.; Suzuki, F.; Nonaka, H.; Karasawa, A.; Mizumoto, H.; Ohno, T.; Kubo, K.; Ishii, A. 8-(Dicyclopropylmethyl)-1,3-dipropylxanthine: A potent and selective adenosine A_{1} antagonist with renal protective and diuretic activities. J. Med. Chem. 1991, 34, 466469. Shimada, J.; Suzuki, F.; Nonaka, H.; Ishii, A. 8-Polycycloalkyl-1,3-dipropylxanthines as potent and selective antagonists for A_{1} adenosine receptors. J. Med. Chem. 1992, 35, 924-930. Peet, N. P.; Lentz, N. L.; Dudley, M. W.; Ogden, A. M. L.; McCarty, D. R.; Racke, M. M. Xanthines with 8 chiral substitutents as potent and selective adenosine A_{1} antagonists. J. Med. Chem. 1993, 36, 40154020.
(9) Pfister, J. R.; Belardinelli, L.; Lee, G.; Lum, R. T.; Milner, P.; Stanley, W. C.; Linden, J.; Baker, S. P.; Schreiner, G. Synthesis and biological evaluation of the enantiomers of the potent and selective A1adenosine antagonist 1,3-dipropyl-8-[2-(5,6-epoxynorbornyl)]-xanthine. J. Med. Chem. 1997, 40, 1773-1778.
(10) (a) Jacobson, K. A.; Kirk, K. L.; Padgett, W. L.; Daly, J. W. Functionalized congeners of 1,3-dialkylxanthines: Preparation of analogues with high affinity for adenosine receptors. J. Med. Chem. 1985, 28, 1334-1340. (b) Jacobson, K. A.; Kirk, K. L.; Padgett, W. L.; Daly, J. W. Functionalized congeners of adenosine: Preparation of analogues with high affinity for A_{1}-adenosine receptors. J. Med. Chem. 1985, 28, 1341-1346. (c) Jacobson, K. A.; Ukena, D.; Kirk, K. L.; Daly, J. W. $\left.{ }^{3} \mathrm{H}\right]$ xanthine amine congener of 1,3-dipropyl-8phenylxanthine: An antagonist radioligand for adenosine receptors. Proc. Natl. Acad. Sci. U.S.A. 1986, 83, 4089-4093. (d) Jacobson, K. A.; Barone, S.; Kammula, U.; Stiles, G. L. Electrophilic derivatives of purines as irreversible inhibitors of A_{1} adenosine receptors. J. Med. Chem. 1989, 32, 1043-1051.
(11) Erickson, R. H.; Hiner, R. N.; Feeney, S. W.; Blake, P. R.; Rzeszotarski, W. J.; Hicks, R. P.; Costello, D. G.; Abreu, M. E. 1,3,8Trisubstituted xanthines. Effects of substitution pattern upon adenosine receptor $\mathrm{A}_{1} / \mathrm{A}_{2}$ affinity. J. Med. Chem. 1991, 34, 1431-1435. Shamim, M. T.; Ukena, D.; Padgett, W. L.; Daly, J. W. Effects of 8 -phenyl and 8-cycloalkyl substituents on the activity of mono-, di-, and trisubstituted alkylxanthines with substitution at the 1-, 3-, and 7-positions. J. Med. Chem. 1989, 32, 1231-1237. Jacobson, K. A.; Kiriasis, L.; Barone, S.; Bradbury, B. J.; Kammula, U.; Campagne, J. M.; Secunda, S.; Daly, J. W.; Neumeyer, J. L.; Pfleiderer, W. Sulfur-containing 1,3-dialkylxanthine derivatives as selective antagonists at adenosine receptors. J. Med. Chem. 1989, 32, 18731879. Shamim, M. T.; Ukena, D.; Padgett, W. L.; Hong, O.; Daly, J. W. 8-Aryl and 8-cycloalkyl-1,3-dipropylxanthines: Further potent and selective antagonists for A_{1}-adenosine receptors. J. Med. Chem. 1988, 31, 613-617. Jacobson, K. A.; De La Cruz, R.; Schulick, R.; Kiriasis, L.; Padgett, W.; Pfleiderer, W.; Kirk, K. L.; Neumeyer, J. L.; Daly, J. W. 8-Substituted xanthines as antagonists at A_{1-} and $\mathrm{A}_{2^{-}}$ adenosine receptors. Biochem. Pharmacol. 1988, 37, 3653-3661. Daly, J. W.; Padgett, W. L.; Shamim, M. T. Analogs of 1,3-dipropyl-8-phenylxanthine: Enhancement of selectivity at A_{1}-adenosine receptors by aryl substituents. J. Med. Chem. 1986, 29, 1520-1524.
(12) Kennedy, A. P.; Mangum, K. C.; Linden, J.; Wells, J. N. Covalent modification of transmembrane span III of the A_{1} adenosine receptor with an antagonist photoaffinity probe. Mol. Pharmacol. 1996, 50, 789-798. Earl, C. Q.; Patel, A.; Craig, R. H.; Daluge, S. M.; Linden, J . Photoaffinity labeling adenosine A_{1} receptors with an antagonist ${ }^{125}$ I-labeled aryl azide derivative of 8-phenylxanthine. J. Med. Chem. 1988, 31, 752-756.
(13) Bondavalli, F.; Maurizio, M.; Bruno, O.; Ciacci, A.; Corelli, F.; Fossa, P.; Lucacchini, A.; Manetti, F.; Martini, C.; Menozzi, G.; Mosti, L.; Ranise, A.; Schenone, S.; Tafi, A.; Trincavelli, M. L. Synthesis, molecular modeling studies, and pharmacological activity of selective A_{1} receptor antagonists. J. Med. Chem. 2002, 45, 4875-4887. Dooley, M. J.; Kono, M.; Suzuki, F. Theoretical structure - activity studies of adenosine A_{1} ligands: Requirements for receptor affinity. Bioorg. Med. Chem. 1996, 4, 923-934. Peet, N. P.; Lentz, N. L.; Meng, E. C.; Dudley, M. W.; Ogden, M. L.; Demeter, D. A.; Weintraub, H. J. R.; Bey, P. A novel synthesis of xanthines: Support for a new binding mode for xanthines with respect to adenosine at adenosine receptors. J. Med. Chem. 1990, 33, 3127-3130.
(14) (a) Martinson, E. A.; Johnson, R. A.; Wells, J. N. Potent adenosine receptor antagonists that are selective for the A_{1} receptor subtype. Mol. Pharmacol. 1987, 31, 247-252. (b) Katsushima, T.; Nieves, L.; Wells, J. N. Structure-activity relationships of 8-cycloalkyl-1,3dipropylxanthines as antagonists of adenosine receptors. J. Med. Chem. 1990, 33, 1906-1910.
(15) Smith, H. A.; Fort, T., Jr. The kinetics of the base-catalyzed hydrolysis of the methyl esters of cyclohexanedicarboxylic acids J. Am. Chem. Soc. 1956, 78, 4000-4002.
(16) Daly, J. W.; Padgett, M. T.; Shamim, P. B.; Waters, J. 1,3-Dialkyl-8-(p-sulfophenyl)xanthines: Potent water-soluble antagonists for A_{1} and A_{2}-adenosine receptors. J. Med. Chem. 1985, 28, 487-492. Papesch, V.; Schroeder, E. F. Synthesis of 1-mono- and 1,3disubstituted 6-aminouracils. Diuretic activity. J. Org. Chem. 1951, 16, 1879-1890.
(17) Della, E. W.; Tsanaktsidis, J. Synthesis of bridgehead-bridgehead substituted bicycloalkanes. Aust. J. Chem. 1985, 38, 1705-1708.
(18) Kiesman, W. F.; Zhao, J.; Conlon, P. R.; Petter, R. C.; Jin, X.; Smits, G.; Lutterodt, F.; Sullivan, G.; Linden, J. Norbornyl-lactone substituted xanthines as adenosine A_{1} receptor antagonists. Bioorg. Med. Chem. 2006, 14, 3654-3661.
(19) Linden, J. Calculating the dissociation constant of an unlabeled compound from the concentration required to displace radiolabel binding by 50%. J. Cyclic Nucleotide Res. 1982, 8, 163-172.
(20) Volpini, R.; Costanzi, S.; Vittori, S.; Cristalli, G.; Klotz, K. N. Medicinal chemistry and pharmacology of $\mathrm{A}_{2 \mathrm{~B}}$ adenosine receptors Curr. Top. Med. Chem. 2003, 3, 427-443. Auchampach, J. A.; Jin, X.; Moore, J.; Wan, T. C.; Kreckler, L. M.; Ge, Z. D.; Narayanan, J.; Smits, G.; Whalley, E.; Kiesman, W.; Ticho, B.; Gross, G. J. Comparison of three different A1 adenosine receptor antagonists on infarct size and multiple cycle ischemic preconditioning in anesthetized dogs. J. Pharmacol. Exp. Ther. 2004, 308 (3), 846-856.
(21) Collis, M. G. Adenosine receptors in isolated tissue preparations. Nucleosides Nucleotides 1991, 10, 1057-1066. Collis, M. G.; Shaw, G.; Keddie, J. R. Diuretic and saliuretic effects of 1,3-dipropyl-8cyclopentylxanthine, a selective A1-adenosine receptor antagonist. J. Pharm. Pharmacol. 1991, 43, 138-139.
(22) Petter, R. C.; Kiesman, W. F.; Conlon, P. R.; Kumaravel, G.; Ensinger, C. L.; Dowling, J.; Peng, B.; Smits, G.; Jin, X.; Lutterodt, F. A.; Fu, K.; LePage, D.; Jayaraj, A.; Gill, A.; Costa, D.; Wortham, K.; Porter, K.; Linden, J.; Sullivan, G. Abstracts of Papers, 224th National Meeting of the American Chemical Society, Boston, MA, 2002; American Chemical Society: Washington, DC, 2002; MEDI417. Ticho, B.; Whalley, E.; Gill, A.; Lutterodt, F.; Jin, X.; Auchampach, J.; Smits, G. Renal effects of BG9928, an A Adenosine Receptor Antagonist, in Rats and Nonhuman Primates. Drug Dev. Res. 2003, 58, 486-492.

JM0605381

[^0]: * To whom correspondence should be addressed: Tel.: 617-679-2790. Fax: 617-679-3635. E-mail: william.kiesman@biogenidec.com.
 \dagger Department of Chemistry, Biogen Idec, Inc.
 * Department of Pharmacology, Biogen Idec, Inc.
 § Department of Pharmaceutical Development, Biogen Idec, Inc.
 "Department of Preclinical Development, Biogen Idec, Inc.
 ${ }^{\perp}$ University of Virginia Medical Center.

[^1]: ${ }^{a}$ Reagents and conditions: (a) $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}$; (b) $\mathrm{LiBH}_{4}, \mathrm{MeOH}$, THF, reflux; (c) DMPI, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}$; (d) methoxymethyl triphenylphosphonium chloride, KHMDS, toluene/THF, $-78{ }^{\circ} \mathrm{C}$, then hydrolysis with 1 N HCl at $25^{\circ} \mathrm{C}$; (e) t - BuOH, 2-methyl-2-butene, $\mathrm{NaClO}_{2}, 0{ }^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$; (f) trimethyl phosphonoacetate, KHMDS, toluene, $0^{\circ} \mathrm{C}$; (g) $\mathrm{KOH}, \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$, reflux; (h) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$; (i) methoxymethyl triphenylphosphonium chloride, KHMDS, toluene/THF, $-78^{\circ} \mathrm{C}$; (j) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}$; (k) $1 \mathrm{M} \mathrm{LiOH}, \mathrm{THF}, 25^{\circ} \mathrm{C}$.
 radioligand bound in the presence of target compound relative to control. Compounds that displayed good hA_{1} binding activity in the single-point assays were further evaluated to determine IC_{50} values and inhibition constants (K_{i} values). ${ }^{19}$ Duplicate full binding curves were derived from antagonist concentrations that ranged from $10^{-11}-10^{-5} \mathrm{M}$. The binding affinities for rat A_{1} $\left(\mathrm{rA}_{1}\right)$ and $\mathrm{A}_{2 \mathrm{~A}}\left(\mathrm{rA}_{2 \mathrm{~A}}\right)$ receptors were also determined for specific compounds that exhibited high human adenosine A_{1} receptor
 binding affinity. Compounds were incubated with either ${ }^{3} \mathrm{H}$ labeled radioligand (DPX or ZM241385) and aliquots of crude membrane suspensions prepared from either rat brain cortex (for rA_{1}) or rat brain striatum (for $\mathrm{rA}_{2 \mathrm{~A}}$). Values of K_{i} were determined from concentration-response relationships for each compound to displace binding of specific radioligands. ${ }^{18}$

 Our testing of the trans-4-carboxylic acid 3 gave a low binding affinity (31% in the single-point assay; estimated $K_{i}>$

[^2]: ${ }^{a}$ All K_{i} values were calculated from binding curves generated from the mean of four determinations per concentration (seven antagonist concentrations), with the variation in individual values of $<15 \%$. ${ }^{b}$ Data are presented as percent (\%) of radioligand bound in the presence of target compound relative to control. ${ }^{c} K_{i}$ values were determined from concentration-response relationships for each compound to displace binding of radioligand to rat brain cortex (for rA_{1}) or rat brain striatum (for $\mathrm{rA}_{2 \mathrm{~A}}$). ${ }^{d}(S)$-ENX: (1,3-dipropyl-8-[2-(5,6-exo-epoxy-($1 S, 2 S$)-norborn-2-yl)]-xanthine) rat values from ref 9 . ${ }^{e}$ NAX :

